Contact for the resource

France Energies Marines

177 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Resolution
From 1 - 10 / 177
  • In response to the issues identified by the sector and the questions raised by citizens concerning the environmental integration of marine renewable energies in France, the COME3T approach aims to provide elements of expertise, synthesis and recommendations based on a national network of experts. In this bulletin, 6 experts contributed to defining the different phenomena that could facilitate the spread of non-indigenous species following the development of offshore wind farms. Several recommendations have been issued to limit the impact on marine ecosystems of the relay effect, ballast water release and the storage of offshore infrastructure in ports.

  • This document briefly presents the methodology used to build the Ecosim and Ecospace models representing the extended Seine Bay ecosystem as well as the main results.

  • Project flyer and summary presenting its outcomes

  • The objectives of the DYNAMO project are: - to develop recommendations for the optimisation of in-service monitoring solutions for subsea cables at the farm leve - to propose a roadmap for the development of the identified promising technologies

  • The objective of the TROPHIK project was to model the role of offshore wind turbines and other anthropogenic activities in modifying the functioning of thefood webs of the Bay of Seine by taking climate change into account. TROPHIK has initiated a methodology to move from the sectoral vision of environmental impact studies to a functional and holistic approach. The analysis of the sensitivity of the functioning of the food web to the development of offshore wind farms represents a solid basis for recommending new areas of implantation. This approach will be completed within the framework of APPEAL and WINDSERV by integrating the societal and economic environment as well as biogeochemical forcings

  • Deliverable D5.2 “Site Characterisation – alpha version” of the DTOceanPlus project include the details of the Deployment Tool module: “Site Characterisation” (SC), and it represents the result of the work developed during the task 5.3 of the project. This document summarises both the functionalities as well as the more technical aspects of the code implemented for this module.

  • Numerical simulations applied on the study sites

  • The objective of the DTOceanPlus project was to develop a software suite of open source advanced tools for the selection, development and deployment of ocean energy systems. DTOceanPlus project made it to develop and demonstrate an open source sotftware suite of second generation design tools for ocean energy technologies including sub-systems, energy capture devices and arrays. These tools support the entire technology innovation process, from concept, through development, to deployment. More broadly, the project also provided an industry standard for communicating technology descriptions throughout the sector. To complement the numerical work, an extensive market analysis of the ocean energy sector is publicly available.

  • Minutes and presentations of the intermediate and final meetings of GEOBIRD. These documents follow the progression and decisions taken during the course of the project.

  • The objective of the ANODE project was to quantify the chemical compounds emitted by the galvanic anodes of ORE structures and the risk associated with their dispersion in the marine environment. By combining ecotoxicological expertise and hydrodynamic modelling, the ANODE project has determined that there is no risk associated with most of the elements making up galvanic anodes, namely zinc, iron, copper and cadmium. On the other hand, concerning aluminium, additional experiments are necessary to conclude. The two currently available Predicted No-Effect Concentrations (PNECs) do not seem suitable for this assessment. These thresholds must therefore be refined and include data from in situ measurements in order to be able to estimate the possible risk associated with aluminium releases.