Creation year

2025

167 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
Scale
Resolution
From 1 - 10 / 167
  • Serveur wms public de l'Ifremer, Accès aux données du Sismer

  • These rasters correspond to the environmental predictors used in the production of Mediterranean bioregions of megabenthic communities

  • Serveur wms du projet DCSMM

  • EMODnet (Chemical data) Map Server with ocean climatologies.

  • Donnees publiques de la Directive Cadre Strategie pour le Milieu Marin (DCSMM)

  • The DBCP – Data Buoy Cooperation Panel - is an international program coordinating the use of autonomous data buoys to observe atmospheric and oceanographic conditions, over ocean areas where few other measurements are taken. DBCP coordinates the global array of 1 600 active drifting buoys (August 2020) and historical observation from 14 000 drifting buoys. Data and metadata collected by drifting buoys are publically available in near real-time via the Global Data Assembly Centers (GDACs) in Coriolis-Ifremer (France) and MEDS (Canada) after an automated quality control (QC). In long term, scientifically quality controlled delayed mode data will be distributed on the GDACs. Disclaimer: the DB-GDAC is under construction. It is currently (January 2020) aggregating data from the Coriolis DAC (E-Surfmar, Canada). Additional DACs are considered. An interim provision from GTS real-time data to GDAC may be provided from Coriolis DAC.  

  • The shapefile corresponds to areas where predicted bioregions were extrapolated for lack of benthic in-situ observations.

  • Web Map Service for Emodnet Chemistry

  • Until recently, classical radar altimetry could not provide reliable sea level data  within 10 km to the coast. However dedicated reprocessing of radar waveform  together with geophysical corrections adapted for the coastal regions now allows  to fill this gap at a large number of coastal sites. In the context of the Climate Change Initiative Sea Level project of the European Space Agency, we have recently performed a complete reprocessing of high resolution (20 Hz, i.e., 350m)  along-track altimetry data of the Jason-1, Jason-2 and Jason-3 missions over  January 2002 to June 2021 along the coastal zones of Northeast Atlantic,  Mediterranean Sea, whole African continent, North Indian Ocean, Southeast Asia,  Australia and North and South America. This reprocessing has provided valid sea  level data in the 0-20 km band from the coast. More than 1000 altimetry-based virtual coastal stations have been selected and sea level anomalies time series  together with associated coastal sea level trends have been computed over the study time span. In the coastal regions devoid from tide gauges  (e.g., African coastlines), these virtual stations offer a unique tool for estimating  sea level change close to the coast (typically up to 3 km to the coast but in many  instances up to 1 km or even closer). Results show that at most of the virtual  stations, the rate of sea level rise at the coast is similar to the rate offshore (15 km away from the coast). However, at some stations, the sea level rate in the last 3-4 km to the coast is either faster or slower than offshore.