From 1 - 10 / 151
  • This deliverable consists of two parts. The first one is a comprehensive review of all the electrical infrastructure technologies between the converter and the point of connection to the onshore electrical grid. The second one is a set of operating regimes of the ocean energy conversion arrays

  • This report is a comprehensive description of the environmental impacts related to operations and maintenance. All marine operations related to inspection, maintenance and repair lead to environmental impacts due to vessel traffic, noise emissions, handling of mooring lines, anchors and cables, etc.

  • A coherent set of functional and technical requirements have been developed for the DTOceanPlus suite of design tools based on analysis of gaps between the current state-of-the-art tools, learning from the original DTOcean project, and the stakeholder expectations identified in the user consultation survey. The technical requirements in this document are translated from the general requirements for the overall suite of tools, and specific requirements (functional, operational, user, interfacing, and data) for the Structured Innovation design tool that has been developed as part of this project. These requirements relate to detailed technical requirements of the technology and environment, for the development, maintenance, support and execution of the software specifications to best meet the needs of the ocean energy industry.

  • This report collates the materials used throughout the DTOceanPlus project on knowledge exchange and training.

  • A coherent set of requirements have been developed for the DTOceanPlus suite of design tools based on analysis of gaps between tools in mature industries and those in the ocean energy industry, learning from the original DTOcean project, and the stakeholder expectations identified in the user consultation exercise. The technical requirements in this document are translated from the general requirements for the overall suite of tools, and specific requirements (functional, operational, user, interfacing, and data) for the Stage Gate design tool that will be developed as part of this project.

  • This document summarises both the functionalities as well as the more technical aspects of the code implemented for this module. This module will provide the user with four assessments: identification of the potential presence of endangered species in the area; environmental impacts estimated using relevant metrics such as the underwater noise or the collision risk between vessels/devices and the marine wildlife; estimation of the carbon footprint of the project in terms of two mid-point indicators; information to improve the social acceptance of the project considering cost of consenting and jobs creation.

  • The Structured Innovation (SI) design tool comprises innovation methodologies that can enhance concept creation and selection in ocean energy systems, enabling a structured approach to address complex ocean energy engineering challenges where design options are numerous. Thus, it can facilitate efficient evolution from concept to commercialisation. The tool is one of a kind beyond the current state-of-the-art, that will enable the transfer and adaptation of the QFD/TRIZ and FMEA methodologies to the ocean energy sector.

  • This report sets out the training and educational activities, and the materials produced as part of the DTOceanPlus project.

  • This document aimed at developing a comprehensive communication plan developed at the beginning of the project in accordance with the overall project management. This plan was an evolving document built on a targeted communication of the DTOceanPluq project results and capitalization on the community. It is the reference framework for evaluating the impact of communication and dissemination activities.

  • Ocean energy is a relevant source of clean renewable energy, and as it is still facing challenges related to its above grid-parity costs, tariffs intended to support in a structured and coherent way are of great relevance and potential impact. The logistics and marine operations required for installing and maintaining these systems are major cost drivers of marine renewable energy projects. Planning the logistics of marine energy projects is a highly complex and intertwined process, and to date, limited advances have been made in the development of decision support tools suitable for ocean energy farm design. The present paper describes the methodology of a novel, opensource, logistic and marine operation planning tool, integrated within DTOceanPlus suite of design tools, and responsible for producing logistic solutions comprised of optimal selections of vessels, port terminals, equipment, as well as operation plans, for ocean energy projects. Infrastructure selection logistic functions were developed to select vessels, ports, and equipment for specific projects. A statistical weather window model was developed to estimate operation delays due to weather. A vessel charter rate modeling approach, based on an in-house vessel database and industry experience, is described in detail. The overall operation assumptions and underlying operating principles of the statistical weather window model, maritime infrastructure selection algorithms, and cost modeling strategies are presented. Tests performed for a case study based a theoretical floating wave energy converter produced results in good agreement with reality.