Bay of Brest
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
status
-
Crepidula fornicata is a common and widespread invasive gregarious species along the European coast. Among its life-history traits, well documented ontogenic changes in behavior (i.e., motile male to sessile female) suggest a potential shift in feeding strategy across its life stages. Considering the ecological significance of this species in colonized areas, understanding how conspecifics share the trophic resource is crucial. Using fatty acids (FA) and stable isotopes (SI) as complementary trophic markers, we conducted a field survey between late winter and spring to investigate the trophic niche of three ontogenic stages of C. fornicata that bear different sexual (male/female) and motility (motile/sessile) traits. Potential trophic sources were characterized by their pigment, FA and SI compositions and showed well discriminated compositions over the studied period. We showed that the biofilm covering C. fornicata shells harbored a higher biomass of primary producers (i.e., chlorophytes and diatoms) than the surrounding sediment. Over the studied period, we observed a covariation between the three ontogenic stages for both FA and SI compositions which suggest that the trophic niche of C. fornicata does not change significantly across its benthic life. During periods of low food availability, slipper limpets displayed an opportunistic suspension-feeding behaviour, relying on both fresh and detrital organic matter, likely coming from superficial sedimentary organic matter. However, during high food availability (i.e., spring phytoplankton bloom), all ontogenic stages largely benefited from this fresh supply of organic matter (pelagic diatoms in this case). The three ontogenic stages showed consistent differences in FA composition, and to a lesser extent in SI composition. These differences persist over time, as they originate from ontogenic physiological changes (differential growth rates, metabolic rate or gametogenesis) rather than diet discrepancies. This study revealed that multiple trophic markers allow high complementary to characterize organic matter as well as food partitioning between conspecific organisms.Crepidula fornicata is a common and widespread invasive gregarious species along the European coast. Among its life-history traits, well documented ontogenic changes in behavior (i.e., motile male to sessile female) suggest a potential shift in feeding strategy across its life stages. Considering the ecological significance of this species in colonized areas, understanding how conspecifics share the trophic resource is crucial. Using fatty acids (FA) and stable isotopes (SI) as complementary trophic markers, we conducted a field survey between late winter and spring to investigate the trophic niche of three ontogenic stages of C. fornicata that bear different sexual (male/female) and motility (motile/sessile) traits. Potential trophic sources were characterized by their pigment, FA and SI compositions and showed well discriminated compositions over the studied period. We showed that the biofilm covering C. fornicata shells harbored a higher biomass of primary producers (i.e., chlorophytes and diatoms) than the surrounding sediment. Over the studied period, we observed a covariation between the three ontogenic stages for both FA and SI compositions which suggest that the trophic niche of C. fornicata does not change significantly across its benthic life. During periods of low food availability, slipper limpets displayed an opportunistic suspension-feeding behaviour, relying on both fresh and detrital organic matter, likely coming from superficial sedimentary organic matter. However, during high food availability (i.e., spring phytoplankton bloom), all ontogenic stages largely benefited from this fresh supply of organic matter (pelagic diatoms in this case). The three ontogenic stages showed consistent differences in FA composition, and to a lesser extent in SI composition. These differences persist over time, as they originate from ontogenic physiological changes (differential growth rates, metabolic rate or gametogenesis) rather than diet discrepancies. This study revealed that multiple trophic markers allow high complementary to characterize organic matter as well as food partitioning between conspecific organisms.
-
The Bargip project : acquisition of scientific data and knowledge to produce advices on integrated management of European sea bass (Dicentrarchus labrax) in North-East Atlantic.
-
SOMLIT (Service d'Observation en Milieur Littoral) : a French Coastal Monitoring Network Coastal zones are where land, ocean and atmosphere interact. They are important for the exchange of matter and energy, and play a key role in (biogeo)chemical cycles at global scale. These environments are characterised by significant spatial and temporal variability of their physico-chemical and biological parameters due to local and seasonal meteorological drivers which are exacerbated by large-scale climate drivers (e.g. global warming, modification of the wind regime) and local-scale anthropogenic drivers (e.g. nutrient cycle changes linked to the use of fertilisers or the construction of large installations such as dams). These driving mechanisms are often interconnected. In the context of global warming (due to climate and human-induced changes), the identification and understanding of their impact on coastal marine and littoral ecosystems is essential. The scientific objective of SOMLIT is to 1) characterise the multi-decadal evolution of coastal marine and littoral ecosystems, and 2) determine the climatic and anthropogenic drivers. In order to meet this objective, a nationally coordinated multi-site monitoring system was set up in the mid-1990s. The observation strategy is the same for each of the 12 monitored ecosystems with fortnightly sampling and/or measurements, at high tide (for sites subject to tides): 1) in surface-water for a range of 15 parameters (temperature, salinity, dissolved oxygen, pH, nitrate, nitrite, ammonium, phosphate, silicate, suspended particulate matter, chlorophyll a, particulate organic carbon and nitrogen and stable isotopes of particulate organic carbon and nitrogen), 2) in surface-water for a range of 26 parameters of numbering and optical characteristics of pico- and nanoplankton), and 3) along the water column for temperature, salinity, fluorescence and PAR (vertical profiles of multi-parameter probes). SOMLIT’s activities are carried out under a quality assurance / quality control process based on the ISO 17025 standard. SOMLIT’s service provision objectives are to provide data and logistical support for research and other observation activities. SOMLIT has been officially accredited since 1996 as one of the CNRS (French National Centre for Scientific Research) National Observation Services (SNO). SOMLIT’s coordination is hosted by the Observatoire Aquitain des Sciences de l'Univers (University of Bordeaux / CNRS) and the service relies on strong partnerships with nine other institutions (University of Lille, University of the Littoral Opal Coast, University of Caen Normandy, Sorbonne University, University of Western Brittany, La Rochelle University, University of Montpellier, Aix Marseille University, National Museum of Natural History). SOMLIT is one of the nine networks that compose France’s Coastal Research Infrastructure (ILICO). SOMLIT has strong ties with ILICO’s other networks such as the SNOs MOOSE (Mediterranean Ocean Observing System on Environment), PHYTOBS (microphytoplankton monitoring) and COAST-HF (Coastal Ocean Observing System - High Frequency).