Format

CSV

302 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 302
  • The Pélagiques Gascogne (PELGAS, Doray et al., 2000) integrated survey aims at assessing the biomass of small pelagic fish and monitoring and studying the dynamics and diversity of the Bay of Biscay pelagic ecosystem in springtime. PELGAS has been conducted within the EU Common Fisheries Policy Data Collection Framework and Ifremer’s Fisheries Information System. Details on survey protocols and data processing methodologies can be found in Doray et al., (2014, 2018a). This dataset comprises the biomass (in metric tons) and abundance (in thousands of individuals) of small pelagic fish estimated during the PELGAS survey in the Bay of Biscay in springtime. The dataset also includes the estimation coefficient of variation, derived based on the hydroacoustic methodology described in Doray et al. (2010), and the survey area. Those estimates have been validated by the ICES WGACEGG group and provided to the ICES WGHANSA group for stock assessment purposes. Data have been used in Doray et al., 2018b.

  • The West Gironde Mud Patch (WGMP) is a mud deposit located 25 km from the mouth of the Gironde Estuary in the Bay of Biscay. This 4-metre-thick clay-silt feature, which extends over an area of 420 km2, is found at depths between 30 and 80 meters. The main objectives of the JERICObent7 cruise, in July 2019, were to characterise the evolution of the WGMP’s benthic ecosystem in terms of its sedimentary, biogeochemical and ecological properties and to reconstruct climate variations and identify potential anthropogenic impacts over the last few centuries. To this end, a precise chronological framework was established for the sedimentary archives of the last few decades using 210Pbxs (T1/2 = 22.3 years). Interface cores were collected at stations 1, 3 and 4 along a cross-shelf transect. Twin Kullenberg cores were collected at sites 3 and 4 for geochemical (KGL) and palaeoceanographic (JB7-ST) investigations. Each interface core was carefully extruded at 0.5 cm intervals from the top of the core to 4 cm, and then at 1 cm intervals until the bottom was reached. Kullenberg cores were only collected at sites 3 and 4. Depending on their intended use, the Kullenberg cores were sampled at different resolutions, the depth of each sediment layer corresponded to the depth from the top of the core. These layers were then used to determine the dry bulk density and radioisotope activities of interest (210Pb, 226Ra,  228Th, 137Cs, 40K). Excess 210Pb was used to establish the realignment and chronological framework of the interface and Kullenberg cores.

  • Global Fishing Watch is working across the globe to provide governments and authorities with actionable reports and capacity building to help strengthen fisheries monitoring and compliance. Our global team of experts produce analyses to inform monitoring, control and surveillance of fisheries in five key areas: - Illegal, unreported and unregulated fishing - Transshipment - Port controls - Marine protected areas - Operation support Collaboration and information sharing are integral to achieving well-managed fisheries. By working with stakeholders and making analyses available to national, regional and intergovernmental partners, Global Fishing Watch is enabling fisheries agencies to make more informed and cost-efficient decisions. Topics: - Commercial fishing, Global Fishing Watch is harnessing innovative technology to turn transparent data into actionable information and drive tangible change in the way that fisheries are governed. - Transshipment, Through publicly sharing map visualisations and creating data and analysis tools, we seek to inform management and policy efforts and provide a more complete picture of transshipment at sea. - Marine protected areas, Global Fishing Watch is harnessing the data and technology revolution to support the effective design, management and monitoring of marine protected areas.

  • The COAST-HF/Arcachon-Ferret time series characterizes the hydrology of the interface between the Arcachon lagoon, located in the South-Western France, and the Atlantic Ocean. A buoy belonging to Phares et Balises is instrumented with a multi-parametric probe that records sub-surface temperature, conductivity, depth, turbidity and fluorescence every 10 minutes since February 2018. It is opérated by the OASU and EPOC teams (Univ. Bordeaux/CNRS). COAST-HF (Coastal OceAn observing SysTem - High Frequency; www.coast-hf.fr) is a national observation network accredited by the CNRS as a national Earth Science Observatory (Service National d’Observation: SNO). It aims to federate and coordinate a set of 14 fixed platforms instrumented with high-frequency in situ measurements for key parameters of coastal waters. The COAST-HF/Arcachon-Ferret buoy is one of them. COAST-HF is part of the French Research Infrastructure dedicated to coastal ocean observations (RI ILICO, https://www.ir-ilico.fr). Data are transmitted to the Coriolis Côtier database (https://data.coriolis-cotier.org/). Data are raw data.

  • The dataset dcm_dtb.txt contains bio-optical measurements and environmental parameters associated with  Deep Chlorophyll Maxima (DCM) acquired by BGC-Argo profiling floats. For each BGC-Argo profile the data files includes the World Meteorological Organization (WMO) and profile numbers, the Data Assembly Center (DAC), the geographical position (LON and LAT), the date of the profile in Julian Day (JULD) and in YYYY-MM-DD format; the region of the profile (REGION, acronyms detailed in the region.txt file), the DCM zonal attribution (ZONE, acronyms detailed in the zone.txt file), the vertical resolution of measurements of the concentration of the chlorophyll a [Chla] and of the backscattering coefficient (bbp) within the 250 first meters, the Mixed Layer Depth (MLD, m), the qualification of the vertical profile (DCM_TYPE) as Deep Biomass Maximum (3), Deep photoAcclimation Maximum (2), or presenting no DCM (1); the depth of the DCM (DCM_DEPTH); the chlorophyll a concentration (CHLA_DCM, mg chla m-3 ) the backscattering coefficient (BBP_DCM, m-1), and the Brunt-Vaisala frequency (N2_DCM) at the DCM depth; the nitracline depth (NCLINE_DEPTH, m) and steepness (NCLINE_STEEP, µmol NO3 m-3 m-1), the mean nitrate concentration within the Mixed Layer (NO3_MEAN_MLD, µmol NO3 m-3), the mean daily Photosynthetically Available Radiation in the Mixed Layer (MEAN_IPAR_MLD, E m -1 d -1), the daily Photosynthetically Available Radiation at the nitracline depth (IPAR_NCLINE, E m-2 d-1);  and the [Chla] measured by satellite (CHLA_SAT, mg chla m-3). The dataset shape_NASTG_ASEW.txt contains the seasonal median, the first and third quartiles of the [Chla] and of the bbp profiles for the North Atlantic Subtropical Gyre and Atlantic SubEquatorial Waters regions. The dataset climato_NASTG_ASEW.txt contains the monthly mean and standard deviations of the DCM depth (DCM_depth), the isolume depth of daily Photosynthetically Available Radiation of 20 E m-2 d-1 (iPAR_20), the nitracline depth, and the Mixed Layer Depth (MLD) for the profiles within the North Atlantic Subtropical Gyre and Atlantic SubEquatorial Waters regions.  The qualification and processing of the BGC-Argo profiles, as well as the DCM detection (DCM_TYPE) and the estimation of the environmental parameters, were applied as described from Cornec, M., Claustre, H., Mignot, A., Guidi, L., Lacour, L., Poteau, A., D’Ortenzio, F.,Gentili, B., Schmechtig, C., (to be updated.) Deep Chlorophyll Maxima in the global ocean: occurrences, drivers and characteristics. Global Biogeochemical Cycles, to be updated The [Chla] satellite variable was obtained by the match of each BGC-Argo profile with a L3S [Chla] product from the Ocean Colour-Climate Change Initiative v4.0 database merging observations from MERIS, MODIS, VIIRS and SeaWiFs, at a monthly and 4x4-km-pixel resolution, up to December 31, 2019 (ftp://oc-cci-data:ELaiWai8ae@oceancolour.org/occci-v4.2/).

  • The BenthOBS dataset includes long-term time series on marine benthic macrofauna, since 1967, along the whole French metropolitan coast. It includes 20 sampling location. BenthOBS aims to establish a national network for the observation of macrozoobenthos. In a context of global change, It is essential to have time series capable of highlighting and understanding ongoing changes in the specific diversity within communities and their consequences on the functioning of marine ecosystems. The BenthOBS network provides the scientific community and stackers with validated data on the following parameters: specific abundance, sediment size composition, sediment organic matter, sediment C content, sediment N content.

  • In October 2019 we chose 15 sites from the 2019 EVHOE survey for environmental DNA (eDNA) sampling. The French international EVHOE bottom trawl survey is carried out annually during autumn in the BoB to monitor demersal fish resources. At each site, we sampled seawater using Niskin bottles deployed with a circular rosette. There were nine bottles on the rosette, each of them able to hold ∼5 l of water. At each site, we first cleaned the circular rosette and bottles with freshwater, then lowered the rosette (with bottles open) to 5 m above the sea bottom, and finally closed the bottles remotely from the boat. The 45 l of sampled water was transferred to four disposable and sterilized plastic bags of 11.25 l each to perform the filtration on-board in a laboratory dedicated to the processing of eDNA samples. To speed up the filtration process, we used two identical filtration devices, each composed of an Athena® peristaltic pump (Proactive Environmental Products LLC, Bradenton, Florida, USA; nominal flow of 1.0 l min–1 ), a VigiDNA 0.20 μm filtration capsule (SPYGEN, le Bourget du Lac, France), and disposable sterile tubing. Each filtration device filtered the water contained in two plastic bags (22.5 l), which represent two replicates per sampling site. We followed a rigorous protocol to avoid contamination during fieldwork, using disposable gloves and single-use filtration equipment and plastic bags to process each water sample. At the end of each filtration, we emptied the water inside the capsule that we replaced by 80 ml of CL1 conservation buffer and stored the samples at room temperature following the specifications of the manufacturer (SPYGEN, Le Bourget du Lac, France). We processed the eDNA capsules at SPYGEN, following the protocol proposed by Polanco-Fernández et al., (2020). Half of the extracted DNA was processed by Sinsoma using newly developped ddPCR assays for European seabass (Dicentrachus labrax), European hake (Merluccius merluccius) and blackspot seabream (Pagellus bogaraveo).  The other half of the extracted DNA was analysed using metabarcoding with teleo primer. The raw metabarcoding data set is available at https://www.doi.org/10.16904/envidat.442 Bottom trawling using a GOV trawl was carried out before or after water sampling. The catch was sorted by species and catches in numbers and weight were recorded. No blackspot seabream individuals were caught.   Data content: * ddPCR/: contains the ddPCR counts and DNA concentrations for each sample and species. * SampleInfo/: contains the filter volume for each eDNA sample. * StationInfo/: contains metadata related to the data collected in the field for each filter. * Metabarcoding/: contains metabarcoding results for teleoprimer. * Trawldata/: contains catch data in numbers and weight (kg).      

  • SUCHIMED 2021 is the 10th campaign for monitoring chemical contamination and its evolution in the Mediterranean Sea. It has been designed as a platform supporting various surveillance and research activities, with the main pillar being the RINBIO network, which involves active biosurveillance through mussel caging. Regarding chemical contamination, the main results of this campaign are as follows: In Occitania region: - Chronic presence of DDT for 20 years. - Detection of terrigenous markers (Mn, As) between the mouths of the Aude and Hérault rivers, along with contamination of sediments near Port-La-Nouvelle by HAP and TCE (Pt). In PACA region: - PCB markers detected between the Rhône River and Marseille (in all matrices), originating from multiple sources with no significant changes over the past 20 years. - HAP contamination in sediments of the industrial-port zone in Fos. - Presence of TBT at the Carry-le-Rouet station above ecologically acceptable concentrations (EAC), to be confirmed in the next campaign. - Detection of metallic elements and HAP in sediments near the Marseille urban area, partly in plankton, along with TCE near the Cortiou wastewater treatment plant outfall. - Chronic marking of PCB, HAP, metals (Hg, Pb, Cu, TCE), PBDE, and/or organotin compounds (TBT) in Toulon Bay, showing no significant temporal trend over two decades for the first five compounds. - Detection of Cr, Mn, and Ni in the water column and HAP in sediments near the Var River mouth, with differences in contamination between matrices raising questions about organic matter origin. - Metal (including Pb) and HAP marking in the water column and sediment in Villefranche Bay. Around Corsica: - Strong influence of the island's geological background (i.e., high Cr and Ni content) on obtained concentrations. - Chronic marking of Cu in the water column in the ports of Porto-Vecchio and Bonifacio, stable over time, with HAP, metals (Hg, Pb, Zn), and to a lesser extent, PCB detection in Bonifacio sediment. - Marking of HAP and TCE in the sediment of the Bastia coastline. - Detection of Pb and TCE at the Golo River mouth. - Contamination of the Canari site with metals (Cr and Ni in the water column, Cu in sediment), and notably, confirmed ecotoxicity likely linked to these elements. The 2021 campaign highlighted the feasibility of researching effects on caged mussels using biomarkers. Lysosomal markers, less sensitive to trophic differences, proved to best reflect the general stress state of organisms related to their contamination. The study of trophic transfers appears to confirm the decrease in most metallic elements (Cr, Cu, Fe, Mn, Ni, Pb) and HAP, bioamplification of Hg and PCB, and specific bioaccumulation of certain elements by organisms (e.g., As or Zn by mussels, HAP by plankton). Finally, the campaign revealed the presence of micro and mesoplastics at almost all sampled sites. The measured microplastic values align with concentrations observed in the western Mediterranean, with a trend towards reduction based on available 10-year data.

  • Three saltmarshes, Aiguillon, Brouage, Fier d'Ars, located in the Pertuis-Charentais Sea along the south-west coast of France, were studied to evaluate their sediment and mass accumulation rates (SAR; MAR) based on 210Pb and 137Cs profiles in sediments. Coastal saltmarshes play indeed an essential role in providing services such as coastal protection and supporting biodiversity. Saltmarshes are also critical environments for the accumulation of sedimentary organic carbon (blue carbon). However, the number of studies on saltmarshes remains underrepresented compared to studies on mangroves and seagrass. This work is a contribution to the effort to document sediment and mass accumulation rates of saltmarshes.A total of 16 1m sediment cores were collected in the three saltmarshes (Aiguillon, Brouage, Fier d'Ars) in 2021 and 2022 using an Eijkelkamp stainless steel peat sampler. Each sediment core was sampled every 1 cm from the top to the bottom of the core. The sediment layers were used to determine dry bulk density and selected radioisotope activities (210Pb, 226Ra, 137Cs, 228Th, 137Cs). Combining excess 210Pb and 137Cs has allowed to establish a reliable chronology of sediment deposition on a multidecadal timescale.