0.75 km
Type of resources
Keywords
Contact for the resource
Provided by
Years
status
Resolution
-
The Joint Polar Satellite System (JPSS), starting with S-NPP launched on 28 October 2011, is the new generation of the US Polar Operational Environmental Satellites (POES). NOAA is responsible for all JPSS products, including SST from the Visible Infrared Imaging Radiometer Suite (VIIRS). The L2P SST product is derived at the native sensor resolution (~0.75 km at nadir, ~1.5 km at swath edge) using NOAA's Advanced Clear-Sky Processor for Ocean (ACSPO) system, and reported in 10-minute granules in netCDF4 format, compliant with the Group for High Resolution Sea Surface Temperature (GHRSST) Data Specification version 2 (GDS2). SSTs are derived from Brightness Temperatures (BTs) using the Non-Linear SST (NLSST) algorithms. An ACSPO clear-sky mask (ACSM) is provided in each pixel as part of variable l2p_flags, which also includes day/night, land, ice, twilight, and glint flags. Only ACSM confidently clear pixels are recommended (equivalent to GDS2 quality level=5). Per GDS2 specifications, two additional Sensor-Specific Error Statistics layers (SSES bias and standard deviation) are reported in each pixel with QL=5. The ACSPO VIIRS SST products are monitored and validated against in situ data in the NOAA iQuam system (https://www.star.nesdis.noaa.gov/socd/sst/iquam ) using the NOAA SQUAM system (https://www.star.nesdis.noaa.gov/socd/sst/squam ). BTs are monitored against RTM simulation in MICROS (https://www.star.nesdis.noaa.gov/socd/sst/micros ). Quality of SST imagery and clear-sky mask are evaluated in the NOAA ARMS system (https://www.star.nesdis.noaa.gov/socd/sst/arms ). A reduced size (0.5GB/day), equal-angle gridded (0.02-deg resolution), ACSPO L3U product is also available at https://doi.org/10.5067/GHVRS-3UO28 where gridded L2P SSTs with QL=5 only are reported. The v2.80 is an updated version from the v2.61 with several algorithm improvements including two added thermal front layers, reduced L2P SST data size, mitigated warm biases in the high latitudes, and improved clear-sky mask.
-
NOAA-20 (N20/JPSS-1/J1) is the second satellite in the US NOAA latest generation Joint Polar Satellite System (JPSS), launched on November 18, 2017. NOAA is responsible for all JPSS products, including SST from the Visible Infrared Imaging Radiometer Suite (VIIRS). The L2P SST product is derived at the native sensor resolution (~0.75 km at nadir, ~1.5 km at swath edge) using NOAA's Advanced Clear-Sky Processor for Ocean (ACSPO) system, and reported in 10-minute granules in netCDF4 format, compliant with the Group for High Resolution Sea Surface Temperature (GHRSST) Data Specification version 2 (GDS2). SSTs are derived from Brightness Temperatures (BTs) using the Non-Linear SST (NLSST) algorithms. An ACSPO clear-sky mask (ACSM) is provided in each pixel as part of variable l2p_flags, which also includes day/night, land, ice, twilight, and glint flags. Only ACSM confidently clear pixels are recommended (equivalent to GDS2 quality level=5). Per GDS2 specifications, two additional Sensor-Specific Error Statistics layers (SSES bias and standard deviation) are reported in each pixel with QL=5. The ACSPO VIIRS SST products are monitored and validated against in situ data in the NOAA iQuam system (https://www.star.nesdis.noaa.gov/socd/sst/iquam ) using the NOAA SQUAM system (https://www.star.nesdis.noaa.gov/socd/sst/squam ). BTs are monitored against RTM simulation in MICROS (https://www.star.nesdis.noaa.gov/socd/sst/micros ). Quality of SST imagery and clear-sky mask are evaluated in the NOAA ARMS system (https://www.star.nesdis.noaa.gov/socd/sst/arms ). A reduced size (0.5GB/day), equal-angle gridded (0.02-deg resolution), ACSPO L3U product is also available at https://doi.org/10.5067/GHV20-3UO28 where gridded L2P SSTs with QL=5 only are reported. The v2.80 is an updated version from the v2.61 with several algorithm improvements including two added thermal front layers, reduced L2P SST data size, mitigated warm biases in the high latitudes, and improved clear-sky mask.