cl_maintenanceAndUpdateFrequency

annually

400 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
Scale
Resolution
From 1 - 10 / 400
  • '''DEFINITION''' The temporal evolution of thermosteric sea level in an ocean layer (here: 0-700m) is obtained from an integration of temperature driven ocean density variations, which are subtracted from a reference climatology (here 1993-2014) to obtain the fluctuations from an average field. The annual mean thermosteric sea level of the year 2017 is substracted from a reference climatology (1993-2014) at each grid point to obtain a global map of thermosteric sea level anomalies in the year 2017, expressed in millimeters per year (mm/yr). '''CONTEXT''' Most of the interannual variability and trends in regional sea level is caused by changes in steric sea level (Oppenheimer et al., 2019). At mid and low latitudes, the steric sea level signal is essentially due to temperature changes, i.e. the thermosteric effect (Stammer et al., 2013, Meyssignac et al., 2016). Salinity changes play only a local role. Regional trends of thermosteric sea level can be significantly larger compared to their globally averaged versions (Storto et al., 2018). Except for shallow shelf sea and high latitudes (> 60° latitude), regional thermosteric sea level variations are mostly related to ocean circulation changes, in particular in the tropics where the sea level variations and trends are the most intense over the last two decades. '''CMEMS KEY FINDINGS''' Higher-than-average thermosteric sea level is reported over most areas of the global ocean and the European regional seas in 2018. In some areas – e.g. the western boundary current regions of the Pacific and Atlantic Ocean in both hemispheres reach values of more than 0.2 m. There are two areas of lower-than-average thermosteric sea level, which stand out from the generally higher-than-average conditions: the western tropical Pacific, and the subpolar North Atlantic. The latter is linked to the so called “North Atlantic cold event” which persists since a couple of years (Dubois et al., 2018). However, its signature has significantly reduced compared to preceding years.

  • '''DEFINITION''' The OMI_EXTREME_SST_MEDSEA_sst_mean_and_anomaly_obs indicator is based on the computation of the 99th and the 1st percentiles from in situ data (observations). It is computed for the variable sea surface temperature measured by in situ buoys at depths between 0 and 5 meters. The use of percentiles instead of annual maximum and minimum values, makes this extremes study less affected by individual data measurement errors. The percentiles are temporally averaged, and the spatial evolution is displayed, jointly with the anomaly in the target year. This study of extreme variability was first applied to sea level variable (Pérez Gómez et al 2016) and then extended to other essential variables, sea surface temperature and significant wave height (Pérez Gómez et al 2018). '''CONTEXT''' Sea surface temperature (SST) is one of the essential ocean variables affected by climate change (mean SST trends, SST spatial and interannual variability, and extreme events). In Europe, several studies show warming trends in mean SST for the last years (von Schuckmann et al., 2016; IPCC, 2021, 2022). An exception seems to be the North Atlantic, where, in contrast, anomalous cold conditions have been observed since 2014 (Mulet et al., 2018; Dubois et al. 2018; IPCC 2021, 2022). Extremes may have a stronger direct influence in population dynamics and biodiversity. According to Alexander et al. 2018 the observed warming trend will continue during the 21st Century and this can result in exceptionally large warm extremes. Monitoring the evolution of sea surface temperature extremes is, therefore, crucial.The Mediterranean Sea has showed a constant increase of the SST in the last three decades across the whole basin with more frequent and severe heat waves (Juza et al., 2022). Deep analyses of the variations have displayed a non-uniform rate in space, being the warming trend more evident in the eastern Mediterranean Sea with respect to the western side. This variation rate is also changing in time over the three decades with differences between the seasons (e.g. Pastor et al. 2018; Pisano et al. 2020), being higher in Spring and Summer, which would affect the extreme values. '''COPERNICUS MARINE SERVICE KEY FINDINGS''' The mean 99th percentiles showed in the area present values from 25ºC in Ionian Sea and 26º in the Alboran sea and Gulf of Lion to 27ºC in the East of Iberian Peninsula. The standard deviation ranges from 0.6ºC to 1.2ºC in the Western Mediterranean and is around 2.2ºC in the Ionian Sea. Results for this year show a slight negative anomaly in the Ionian Sea (-1ºC) inside the standard deviation and a clear positive anomaly in the Western Mediterranean Sea reaching +2.2ºC, almost two times the standard deviation in the area. '''DOI (product):''' https://doi.org/10.48670/moi-00267

  • '''Short description:''' For the Global Ocean- In-situ observation delivered in delayed mode. This In Situ delayed mode product integrates the best available version of in situ oxygen, chlorophyll / fluorescence and nutrients data. '''DOI (product) :''' https://doi.org/10.17882/86207

  • '''DEFINITION''' The product OMI_IBI_CURRENTS_VOLTRANS_section_integrated_anomalies is defined as the time series of annual mean volume transport calculated across a set of vertical ocean sections. These sections have been chosen to be representative of the temporal variability of various ocean currents within the IBI domain. The currents that are monitored include: transport towards the North Sea through Rockall Trough (RTE) (Holliday et al., 2008; Lozier and Stewart, 2008), Canary Current (CC) (Knoll et al. 2002, Mason et al. 2011), Azores Current (AC) (Mason et al., 2011), Algerian Current (ALG) (Tintoré et al, 1988; Benzohra and Millot, 1995; Font et al., 1998), and net transport along the 48ºN latitude parallel (N48) (see OMI Figure). To provide ensemble-based results, four Copernicus products have been used. Among these products are three reanalysis products (GLO-REA, IBI-REA and MED-REA) and one product obtained from reprocessed observations (GLO-ARM). • GLO-REA: GLOBAL_MULTIYEAR_PHY_001_030 (Reanalysis) • IBI-REA: IBI_MULTIYEAR_PHY_005_002 (Reanalysis) • MED-REA: MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012 (Reprocessed observations) • MED-REA: MEDSEA_MULTIYEAR_PHY_006_004MEDSEA_MULTIYEAR_PHY_006_004 (Reanalysis) The time series comprises the ensemble mean (blue line), the ensemble spread (grey shaded area), and the mean transport with the sign reversed (red dashed line) to indicate the threshold of anomaly values that would entail a reversal of the current transport. Additionally, the analysis of trends in the time series at the 95% confidence interval is included in the bottom right corner of each diagram. Details on the product are given in the corresponding Product User Manual (de Pascual-Collar et al., 2024a) and QUality Information Document (de Pascual-Collar et al., 2024b) as well as the CMEMS Ocean State Report: de Pascual-Collar et al., 2024c. '''CONTEXT''' The IBI area is a very complex region characterized by a remarkable variety of ocean currents. Among them, Podemos destacar las que se originan como resultado del closure of the North Atlantic Drift (Mason et al., 2011; Holliday et al., 2008; Peliz et al., 2007; Bower et al., 2002; Knoll et al., 2002; Pérez et al., 2001; Jia, 2000), las corrientes subsuperficiales que fluyen hacia el norte a lo largo del talud continental (de Pascual-Collar et al., 2019; Pascual et al., 2018; Machin et al., 2010; Fricourt et al., 2007; Knoll et al., 2002; Mazé et al., 1997; White & Bowyer, 1997). Y las corrientes de intercambio que se producen en el Estrecho de Gibraltar y el Mar de Alboran (Sotillo et al., 2016; Font et al., 1998; Benzohra and Millot, 1995; Tintoré et al., 1988). The variability of ocean currents in the IBI domain is relevant to the global thermohaline circulation and other climatic and environmental issues. For example, as discussed by Fasullo and Trenberth (2008), subtropical gyres play a crucial role in the meridional energy balance. The poleward salt transport of Mediterranean water, driven by subsurface slope currents, has significant implications for salinity anomalies in the Rockall Trough and the Nordic Seas, as studied by Holliday (2003), Holliday et al. (2008), and Bozec et al. (2011). The Algerian current serves as the sole pathway for Atlantic Water to reach the Western Mediterranean. '''CMEMS KEY FINDINGS''' The volume transport time series show periods in which the different monitored currents exhibited significantly high or low variability. In this regard, we can mention the periods 1997-1998 and 2014-2015 for the RTE current, the period 2012-2014 in the N48 section, the years 2006 and 2017 for the ALG current, the year 2021 for the AC current, and the period 2009-2012 for the CC current. Additionally, periods are detected where the anomalies are large enough (in absolute value) to indicate a reversal of the net transport of the current. This is the case for the years 1999, 2003, and 2012-2014 in the N48 section (with a net transport towards the north), the year 2017 in the ALC current (with net transport towards the west), and the year 2010 in the CC current (with net transport towards the north). The trend analysis of the monitored currents does not detect any significant trends over the analyzed period (1993-2022). However, the confidence interval for the trend in the RTE section is on the verge of rejecting the hypothesis of no trend. '''Figure caption''' Annual anomalies of cross-section volume transport in monitoring sections RTE, N48, AC, ALC, and CC. Time series computed and averaged from different Copernicus Marine products for each window (see section Definition) providing a multi-product result. The blue line represents the ensemble mean, and shaded grey areas represent the standard deviation of the ensemble. Red dashed lines depict the velocity value at which the direction of the current reverses. This aligns with the average transport value (with sign reversed) and the point where absolute transport becomes zero. The analysis of trends (at 95% confidence interval) computed in the period 1993–2021 is included (bottom right box). Trend lines (gray dashed line) are only included in the figures when a significant trend is obtained. '''DOI (product):''' https://doi.org/10.48670/mds-00351

  • '''This product has been archived''' For operationnal and online products, please visit https://marine.copernicus.eu '''DEFINITION''' The time series are derived from the regional chlorophyll reprocessed (REP) products as distributed by CMEMS which, in turn, result from the application of the regional chlorophyll algorithms over remote sensing reflectances (Rrs) provided by the ESA Ocean Colour Climate Change Initiative (ESA OC-CCI, Sathyendranath et al. 2019; Jackson 2020). Daily regional mean values are calculated by performing the average (weighted by pixel area) over the region of interest. A fixed annual cycle is extracted from the original signal, using the Census-I method as described in Vantrepotte et al. (2009). The deasonalised time series is derived by subtracting the mean seasonal cycle from the original time series, and then fitted to a linear regression to, finally, obtain the linear trend. '''CONTEXT''' Phytoplankton – and chlorophyll concentration as a proxy for phytoplankton – respond rapidly to changes in environmental conditions, such as temperature, light and nutrients availability, and mixing. The response in the North Atlantic ranges from cyclical to decadal oscillations (Henson et al., 2009); it is therefore of critical importance to monitor chlorophyll concentration at multiple temporal and spatial scales, in order to be able to separate potential long-term climate signals from natural variability in the short term. In particular, phytoplankton in the North Atlantic are known to respond to climate variability associated with the North Atlantic Oscillation (NAO), with the initiation of the spring bloom showing a nominal correlation with sea surface temperature and the NAO index (Zhai et al., 2013). '''CMEMS KEY FINDINGS''' While the overall trend average for the 1997-2020 period in the North Atlantic Ocean is slightly positive (0.92 ± 0.13 % per year), an underlying low frequency harmonic signal can be seen in the deseasonalised data. The annual average for the region in 2020 is 0.31 mg m-3. Though no appreciable changes in the timing of the spring and autumn blooms have been observed during 2020, these reached higher chlorophyll values than the average for the time series. In particular, the spring bloom maximum in 2020, circa 0.80 mg m-3, showed an increase in chlorophyll concentration from the observations during the 2016-2019 spring blooms. Note: The key findings will be updated annually in November, in line with OMI evolutions. '''DOI (product):''' https://doi.org/10.48670/moi-00194

  • '''DEFINITION''' The omi_climate_sst_ibi_trend product includes the Sea Surface Temperature (SST) trend for the Iberia-Biscay-Irish areas over the period 1982-2024, i.e. the rate of change (°C/year). This OMI is derived from the CMEMS REP ATL L4 SST product (SST_ATL_SST_L4_REP_OBSERVATIONS_010_026), see e.g. the OMI QUID, http://marine.copernicus.eu/documents/QUID/CMEMS-OMI-QUID-CLIMATE-SST-IBI_v3.pdf), which provided the SSTs used to compute the SST trend over the Iberia-Biscay-Irish areas. This reprocessed product consists of daily (nighttime) interpolated 0.05° grid resolution SST maps built from re-processed ESA SST CCI, C3S (Embury et al., 2024). Trend analysis has been performed by using the X-11 seasonal adjustment procedure (see e.g. Pezzulli et al., 2005), which has the effect of filtering the input SST time series acting as a low bandpass filter for interannual variations. Mann-Kendall test and Sens’s method (Sen 1968) were applied to assess whether there was a monotonic upward or downward trend and to estimate the slope of the trend and its 95% confidence interval. The reference for this OMI can be found in the first and second issue of the Copernicus Marine Service Ocean State Report (OSR), Section 1.1 (Roquet et al., 2016; Mulet et al., 2018). '''CONTEXT''' Sea surface temperature (SST) is a key climate variable since it deeply contributes in regulating climate and its variability (Deser et al., 2010). SST is then essential to monitor and characterise the state of the global climate system (GCOS 2010). Long-term SST variability, from interannual to (multi-)decadal timescales, provides insight into the slow variations/changes in SST, i.e. the temperature trend (e.g., Pezzulli et al., 2005). In addition, on shorter timescales, SST anomalies become an essential indicator for extreme events, as e.g. marine heatwaves (Hobday et al., 2018). '''CMEMS KEY FINDINGS''' The overall trend in the SST anomalies in this region is 0.012 ±0.001 °C/year over the period 1982-2024. '''DOI (product):''' https://doi.org/10.48670/moi-00257