2018
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
Scale
Resolution
-
Map of seasonal averages of Chlorophyll a (ug/l, 90th percentile) indicator for eutrophication for the past 10 years (2005-2014) in the Atlantic basin. It will be generated using in situ measurements of the different parameters required to assess the Chlorophyll a indicator and the OSPAR Convention Common procedure methodology (OSPAR 2013, Common Procedure for the Identification of the Eutrophication Status of the OSPAR Maritime Area. Agreement 2013-08. 67 pp).
-
Map the occurrence of ice at 1-degree resolution over different periods of the last century (1915-2014, 1965-2014, 2005-2014, 2009-2014). For each entire period (100, 50, 10, 5 years) find and map all cells of the 1 degree grid that experience ice conditions in at least 1 month.
-
PPRIF
-
Map of seasonal averages of dissolved inorganic Nitrogen (uM) indicator for eutrophication for the past 10 years (2005-2014) in the Atlantic basin. It will be generated using in situ measurements of the different parameteres required to assess the dissolved inorganic Nitrogen indicator and the OSPAR Convention Common procedure methodology (OSPAR 2013, Common Procedure for the Identification of the Eutrophication Status of the OSPAR Maritime Area. Agreement 2013-08. 67 pp).
-
Global Ocean Zonal Mean Subsurface Temperature cumulative trend from Multi-Observations Reprocessing
'''DEFINITION''' The linear change of zonal mean subsurface temperature over the period 1993-2019 at each grid point (in depth and latitude) is evaluated to obtain a global mean depth-latitude plot of subsurface temperature trend, expressed in °C. The linear change is computed using the slope of the linear regression at each grid point scaled by the number of time steps (27 years, 1993-2019). A multi-product approach is used, meaning that the linear change is first computed for 5 different zonal mean temperature estimates. The average linear change is then computed, as well as the standard deviation between the five linear change computations. The evaluation method relies in the study of the consistency in between the 5 different estimates, which provides a qualitative estimate of the robustness of the indicator. See Mulet et al. (2018) for more details. '''CONTEXT''' Large-scale temperature variations in the upper layers are mainly related to the heat exchange with the atmosphere and surrounding oceanic regions, while the deeper ocean temperature in the main thermocline and below varies due to many dynamical forcing mechanisms (Bindoff et al., 2019). Together with ocean acidification and deoxygenation (IPCC, 2019), ocean warming can lead to dramatic changes in ecosystem assemblages, biodiversity, population extinctions, coral bleaching and infectious disease, change in behavior (including reproduction), as well as redistribution of habitat (e.g. Gattuso et al., 2015, Molinos et al., 2016, Ramirez et al., 2017). Ocean warming also intensifies tropical cyclones (Hoegh-Guldberg et al., 2018; Trenberth et al., 2018; Sun et al., 2017). '''CMEMS KEY FINDINGS''' The results show an overall ocean warming of the upper global ocean over the period 1993-2019, particularly in the upper 300m depth. In some areas, this warming signal reaches down to about 800m depth such as for example in the Southern Ocean south of 40°S. In other areas, the signal-to-noise ratio in the deeper ocean layers is less than two, i.e. the different products used for the ensemble mean show weak agreement. However, interannual-to-decadal fluctuations are superposed on the warming signal, and can interfere with the warming trend. For example, in the subpolar North Atlantic decadal variations such as the so called ‘cold event’ prevail (Dubois et al., 2018; Gourrion et al., 2018), and the cumulative trend over a quarter of a decade does not exceed twice the noise level below about 100m depth. Note: The key findings will be updated annually in November, in line with OMI evolutions. '''DOI (product):''' https://doi.org/10.48670/moi-00244
-
The challenge attempts to collect bycatch data for the North Atlantic sea basin (i.e. north of the equator, excluding Caribe, Baltic, North Sea and Artic) and to compute: mass and number of discards by species and year, including fish, mammals, reptiles and seabirds. Data are presented in an Excel's spreadsheet.
-
Centres d'exploitation sur les départements de la Dordogne, Gironde et du Lot-et-Garonne
-
The challenge attempts to collect discards data for the North Atlantic sea basin (i.e. north of the equator, excluding Caribe, Baltic, North Sea and Artic) and to compute: mass and number of discards by species and year, including fish, mammals, reptiles and seabirds. Data are presented in an Excel's spreadsheet.
-
Annual resolution time-series of the annual averaged basin average-SST. Calculate the annual average SST on a 1degree grid and then find the area weighted average.
-
This product attempt to follow up on the sea level rise per stretch of coast of the North Atlantic, over past 10 years as follows: • Characterization of absolute sea level trend at annual resolution, along the coasts of EU Member States (including Outermost Regions), Canada, Faroes, Greenland, Iceland, Mexico, Morocco, Norway and USA; The stretchs or coast are defined by the administrative regions of the Atlantic Coast: • from NUTS3** administrative division for EU countries (see Eurostat), and • from GADM*** administrative divisions for non-EU countries. ** Third level of Nomenclature of Territorial Units for Statistics *** Global Administrative Areas For relative sea level trend for 10 years we extract the information from coastal tide gauge data available for each stretch of coast, if no tide gauge available there is a dat gap. The product is Provided in tabular form and as a map layer.
Catalogue PIGMA