Creation year

2025

389 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
Scale
Resolution
From 1 - 10 / 389
  • This visualization product displays the type of litter in percent per net per year from specific protocols different from research and monitoring protocols. EMODnet Chemistry included the collection of marine litter in its 3rd phase. Before 2021, there was no coordinated effort at the regional or European scale for micro-litter. Given this situation, EMODnet Chemistry proposed to adopt the data gathering and data management approach as generally applied for marine data, i.e., populating metadata and data in the CDI Data Discovery and Access service using dedicated SeaDataNet data transport formats. EMODnet Chemistry is currently the official EU collector of micro-litter data from Marine Strategy Framework Directive (MSFD) National Monitoring activities (descriptor 10). A series of specific standard vocabularies or standard terms related to micro-litter have been added to SeaDataNet NVS (NERC Vocabulary Server) Common Vocabularies to describe the micro-litter. European micro-litter data are collected by the National Oceanographic Data Centres (NODCs). Micro-litter map products are generated from NODCs data after a test of the aggregated collection including data and data format checks and data harmonization. A filter is applied to represent only micro-litter sampled according to a very specific protocol such as the Volvo Ocean Race (VOR) or Oceaneye. To calculate percentages for each type, formula applied is: Type (%) = (∑number of particles of each type)*100 / (∑number of particles of all type) When the number of micro-litters was not filled or was equal to zero, it was not possible to calculate the percentage. Standard vocabularies for micro-litter types are taken from Seadatanet's H01 library (https://vocab.seadatanet.org/v_bodc_vocab_v2/search.asp?lib=H01). Some morphological types of micro-litters may have been sampled but were not defined by the protocole applied during the survey. They are represented as « undefined micro-litter items ». Warnings: - the absence of data on the map does not necessarily mean that they do not exist, but that no information has been entered in the National Oceanographic Data Centre (NODC) for this area. - since 03/07/2023, the preferred label « Undefined micro-litter items » has been integrated into the H01 library whereas the labels « microplastic items », « non-plastic man-made micro-particles (e.g. glass, metal, tar) » and «non-plastic filaments (natural fibres, rubber) » have been deprecated. When defined, the material or polymer type can be checked directly in the source data.

  • This visualization product displays plastic bags density per trawl. EMODnet Chemistry included the collection of marine litter in its 3rd phase. Since the beginning of 2018, data of seafloor litter collected by international fish-trawl surveys have been gathered and processed in the EMODnet Chemistry Marine Litter Database (MLDB). The harmonization of all the data has been the most challenging task considering the heterogeneity of the data sources, sampling protocols (OSPAR and MEDITS protocols) and reference lists used on a European scale. Moreover, within the same protocol, different gear types are deployed during bottom trawl surveys. In cases where the wingspread and/or number of items were/was unknown, it was not possible to use the data because these fields are needed to calculate the density. Data collected before 2011 are concerned by this filter. When the distance reported in the data was null, it was calculated from: - the ground speed and the haul duration using the following formula: Distance (km) = Haul duration (h) * Ground speed (km/h); - the trawl coordinates if the ground speed and the haul duration were not filled in. The swept area was calculated from the wingspread (which depends on the fishing gear type) and the distance trawled: Swept area (km²) = Distance (km) * Wingspread (km) Densities were calculated on each trawl and year using the following computation: Density of plastic bags (number of items per km²) = ∑Number of plastic bags related items / Swept area (km²) Percentiles 50, 75, 95 & 99 were calculated taking into account data for all years. The list of selected items for this product is attached to this metadata. Information on data processing and calculation is detailed in the attached methodology document. Warning: the absence of data on the map does not necessarily mean that they do not exist, but that no information has been entered in the Marine Litter Database for this area.

  • EMODnet Chemistry aims to provide access to marine chemistry datasets and derived data products concerning eutrophication, acidity and contaminants. The importance of the selected substances and other parameters relates to the Marine Strategy Framework Directive (MSFD). This aggregated dataset contains all unrestricted EMODnet Chemistry data on potential hazardous substances, despite the fact that some data might not be related to pollution (e.g. collected by deep corer). Temperature, salinity and additional parameters are included when available. It covers the Northeast Atlantic Ocean (40W). Data were harmonised and validated by '‘IFREMER / IDM / SISMER - Scientific Information Systems for the SEA’ in France. The dataset contains water (profiles), sediment (profiles and timeseries) and biota (timeseries). The temporal coverage is 1974–2018 for water measurements, 1966–2022 for sediment measurements and 1979–2023 for biota measurements. Regional datasets concerning contaminants are automatically harvested and the resulting collections are harmonised and validated using ODV Software and following a common methodology for all sea regions ( https://doi.org/10.6092/8b52e8d7-dc92-4305-9337-7634a5cae3f4 ). Parameter names are based on P01 vocabulary, which relates to BODC Parameter Usage Vocabulary and is available at: https://vocab.nerc.ac.uk/search_nvs/P01/ . The harmonised dataset can be downloaded as as an ODV spreadsheet, which is composed of a metadata header followed by tab separated values. This spreadsheet can be imported into ODV Software for visualisation (more information can be found at: https://www.seadatanet.org/Software/ODV ). In addition, the same dataset is offered also as a txt file in a long/vertical format, in which each P01 measurement is a record line. Additionally, there are a series of columns that split P01 terms into subcomponents (substance, CAS number, matrix...).This transposed format is more adapted to worksheet applications (e.g. LibreOffice Calc).

  • The flat oyster Ostrea edulis is a European native species that once covered vast areas in the North Sea, on the Atlantic coast and in other European coastal waters including the Mediterranean region. All these populations have been heavily fished by dredging over the last three centuries. More recently, the emergence of parasites combined with the proliferation of various predators and many human-induced additional stressors have caused a dramatic decrease in the last remaining flat oyster populations. Today, this species has disappeared from many locations in Europe and is registered on the OSPAR (Oslo-Paris Convention for the Protection of the Marine environment of the North-East Atlantic) list of threatened and/or declining species (see https://www.ospar.org/work-areas/bdc/species-habitats/list-of-threatened-declining-species-habitats). In that context, since 2018, the Flat Oyster REcoVERy project (FOREVER) has been promoting the reestablishment of native oysters in Brittany (France). This multi-partner project, involving the CRC (Comité Régional de la Conchyliculture), IFREMER (Institut Français de Recherche pour l’Exploitation de la Mer), ESITC (École Supérieure d’Ingénieurs des Travaux de la Construction) Caen and Cochet Environnement, has consisted of (1) inventorying and evaluating the status of the main wild flat oyster populations across Brittany, (2) making detailed analysis of the two largest oyster beds in the bays of Brest and Quiberon to improve understanding of flat oyster ecology and recruitment variability and to suggest possible ways of improving recruitment, and (3) proposing practical measures for the management of wild beds in partnership with members of the shellfish industry and marine managers. the final report of this project is available on Archimer : https://doi.org/10.13155/79506. This survey is part of the task 1 of the FOREVER, which took place between 2017-2021. Some previous data, acquired with the same methodology and within the same geographic area have been also added to this dataset. These data were collected during 30 intertidal and diving surveys in various bays and inlets of the coast of Bretagne. The localization of these surveys has been guided by the help of historical maps. In the field, the methodology was simple enough to be easily implemented regardless of the configuration of the sampled site. The intertidal survey was conducted at very low tide (tidal range > 100) to sample the 0-1m level. Sampling was carried out randomly or systematically following the low water line. Where possible (in terms of visibility and accessibility), dive surveys were also carried out (0-10m depth), along 100m transects, using the same methodology of counting in a 1m2 quadrat. As often as possible, geo-referenced photographs were taken to show the appearance, density and habitat where Ostrea edulis was present. All these pictures are available in the image bank file. Overall, this dataset contains a total of 300 georeferenced records, where flat oysters have been observed. The dataset file contains also information concerning the surrounding habitat description and is organized according the OSPAR recommendations. This publication gives also a map, under a kml format showing each occurrence and its characteristics. This work was done in the framework of the following research project: " Inventaire, diagnostic écologique et restauration des principaux bancs d’huitres plates en Bretagne : le projet FOREVER. Contrat FEAMP 17/2215675".

  • Web Map Service for Emodnet Chemistry

  • Rapid changes in ocean circulation and climate have been observed in marine-sediment and ice cores over the last glacial period and deglaciation, highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing. To date, these rapid changes in climate and ocean circulation are still not fully explained. One obstacle hindering progress in our understanding of the interactions between past ocean circulation and climate changes is the difficulty of accurately dating marine cores. Here, we present a set of 92 marine sediment cores from the Atlantic Ocean for which we have established age-depth models that are consistent with the Greenland GICC05 ice core chronology, and computed the associated dating uncertainties, using a new deposition modeling technique. This is the first set of consistently dated marine sediment cores enabling paleoclimate scientists to evaluate leads/lags between circulation and climate changes over vast regions of the Atlantic Ocean. Moreover, this data set is of direct use in paleoclimate modeling studies.

  • This visualization product displays the size of litter in percent per net per year from specific protocols different from research and monitoring protocols. EMODnet Chemistry included the collection of marine litter in its 3rd phase. Before 2021, there was no coordinated effort at the regional or European scale for micro-litter. Given this situation, EMODnet Chemistry proposed to adopt the data gathering and data management approach as generally applied for marine data, i.e., populating metadata and data in the CDI Data Discovery and Access service using dedicated SeaDataNet data transport formats. EMODnet Chemistry is currently the official EU collector of micro-litter data from Marine Strategy Framework Directive (MSFD) National Monitoring activities (descriptor 10). A series of specific standard vocabularies or standard terms related to micro-litter have been added to SeaDataNet NVS (NERC Vocabulary Server) Common Vocabularies to describe the micro-litter. European micro-litter data are collected by the National Oceanographic Data Centres (NODCs). Micro-litter map products are generated from NODCs data after a test of the aggregated collection including data and data format checks and data harmonization. A filter is applied to represent only micro-litter sampled according to a very specific protocol such as the Volvo Ocean Race (VOR) or Oceaneye. To calculate percentages for each size, formula applied is: Size (%) = (∑number of particles of each size)*100 / (∑number of particles of all size) When the number of micro-litters was not filled or was equal to zero, it was not possible to calculate the percentage. Standard vocabularies for micro-litter size classes are taken from Seadatanet's H03 library (https://vocab.seadatanet.org/v_bodc_vocab_v2/search.asp?lib=H03 ). Different protocols with different degrees of precision were used to classify the sampled micro-litters. Consequently, on the map, the distribution of micro-litter in the size classes depends on the protocol applied during the survey. Warning: the absence of data on the map does not necessarily mean that they do not exist, but that no information has been entered in the National Oceanographic Data Centre (NODC) for this area.

  • The present repository makes available the model, material and outputs of the ISIS-Fish modeling work showcased in the peer-reviewed scientific article by Bastardie et al. 2025. As part of the SEAwise research project (seawiseproject.org), we used an ISIS-Fish database (Mahevas et al 2003, Pelletier et al. 2009, isis-fish.org) previously developed within the MACCO project which describes the mixed demersal fishery in the Bay of Biscay. For this application, the spatial extent of the fishery is the Bay of Biscay, defined here by ICES divisions 8a, 8b and 8d and the resolution chosen is 1/16 ICES statistical rectangle. The biological module (Vajas et al. 2024) includes 7 species of economic interest in the mixed demersal fishery: European hake (Merluccius merluccius), common sole (Solea solea), Norway lobster (Nephrops norvegicus), megrim (Lepidorhombus whiffiagonis), anglerfish (Lophius piscatorius) and two ray species (Raja clavata, Leucoraja naevus). The fishing activities module (Mahevas et al. 2024) is made up of 41 demersal fleets (including all French vessels < 12 meters and > 12 meters fishing in this area, Spanich, UK and Belgium fleets) and 431 métiers (combination of a gear, location and mix of target species) catching these 7 species, as target or bycatch. Monthly effort of a fleet distributes among the possible métiers (those historically practiced). The biological and fishing activity modules are identical to the published version. The original model used here has been calibrated on historical catch data 2015-2018 by tuning accessibility and catchability parameters. In the present application the Bay of Biscay model is used to investigate the spatial- and effort- based fisheries management strategies. Consistently with for a task of the SEAwise project (Bastardie et al. 2024) simulations were conducted from 2021 onwards, projecting the effect of an implementation of 3 different closures from 2022 to 2050, under current fishing effort conditions or in a context of fishing effort reduction. Outcomes of these simulations are averaged over short/medium (10 year horizon) and long-term period (20 year horizon). The data project includes: 1) the database including the biological module and fishing activity module; 2) 8 .properties files, each corresponding to one combination of management measure and closure, to restore the simulations parameters in the ISIS-Fish interface and reproduce the simulation runs; 3) the .java scripts to force effort dynamics and simulate spatio-temporal closures, as well as generate the main output files - they will be called by the ISIS-Fish software once the simulations restored 4) the .rds containing the main outputs of the simulations and the associated .html document displaying the R code to compute the indices of interest at different levels of aggregation and reproduce the figures in Bastardie et al. 2025. All files are provided in the Zip. Associated with this material, a study summary and a readme .docx are provided. The first one provides context on the present work and describes the model and simulations' design. The second provides guidelines to reproduce the simulations and their derived outcomes from the data project material made available in this repository. They are both directly downloadable from this repository and are also copied to the zipped folder containing the data project. All the data are reproducible using isis-fish-4.4.8.1 (isis-fish.org; available at forge.codelutin.com) and R 4.2.0.

  • EMODnet (Chemical data) Map Server with ocean climatologies.