2025
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
Scale
Resolution
-
-
Donnees publiques de la Directive Cadre Strategie pour le Milieu Marin (DCSMM)
-
A compliant implementation of WMS plus most of the SLD extension (dynamic styling). Can also generate PDF, SVG, KML, GeoRSS
-
Serveur wms public de l'Ifremer - projet REPAMO
-
Web Feature Service for Emodnet Chemistry
-
This visualization product displays the density of floating micro-litter per net normalized per m³ per year from specific protocols different from research and monitoring protocols. EMODnet Chemistry included the collection of marine litter in its 3rd phase. Before 2021, there was no coordinated effort at the regional or European scale for micro-litter. Given this situation, EMODnet Chemistry proposed to adopt the data gathering and data management approach as generally applied for marine data, i.e., populating metadata and data in the CDI Data Discovery and Access service using dedicated SeaDataNet data transport formats. EMODnet Chemistry is currently the official EU collector of micro-litter data from Marine Strategy Framework Directive (MSFD) National Monitoring activities (descriptor 10). A series of specific standard vocabularies or standard terms related to micro-litter have been added to SeaDataNet NVS (NERC Vocabulary Server) Common Vocabularies to describe the micro-litter. European micro-litter data are collected by the National Oceanographic Data Centres (NODCs). Micro-litter map products are generated from NODCs data after a test of the aggregated collection including data and data format checks and data harmonization. A filter is applied to represent only micro-litter sampled according to a very specific protocol such as the Volvo Ocean Race (VOR) or Oceaneye. Densities were calculated for each net using the following calculation: Density (number of particles per m³) = Micro-litter count / Sampling effort (m³) When the number of micro-litters was not filled, it was not possible to calculate the density. Percentiles 50, 75, 95 & 99 have been calculated taking into account data for all years. Warning: the absence of data on the map does not necessarily mean that they do not exist, but that no information has been entered in the National Oceanographic Data Centre (NODC) for this area.
-
This visualization product displays the type of litter in percent per net per year from specific protocols different from research and monitoring protocols. EMODnet Chemistry included the collection of marine litter in its 3rd phase. Before 2021, there was no coordinated effort at the regional or European scale for micro-litter. Given this situation, EMODnet Chemistry proposed to adopt the data gathering and data management approach as generally applied for marine data, i.e., populating metadata and data in the CDI Data Discovery and Access service using dedicated SeaDataNet data transport formats. EMODnet Chemistry is currently the official EU collector of micro-litter data from Marine Strategy Framework Directive (MSFD) National Monitoring activities (descriptor 10). A series of specific standard vocabularies or standard terms related to micro-litter have been added to SeaDataNet NVS (NERC Vocabulary Server) Common Vocabularies to describe the micro-litter. European micro-litter data are collected by the National Oceanographic Data Centres (NODCs). Micro-litter map products are generated from NODCs data after a test of the aggregated collection including data and data format checks and data harmonization. A filter is applied to represent only micro-litter sampled according to a very specific protocol such as the Volvo Ocean Race (VOR) or Oceaneye. To calculate percentages for each type, formula applied is: Type (%) = (∑number of particles of each type)*100 / (∑number of particles of all type) When the number of micro-litters was not filled or was equal to zero, it was not possible to calculate the percentage. Standard vocabularies for micro-litter types are taken from Seadatanet's H01 library (https://vocab.seadatanet.org/v_bodc_vocab_v2/search.asp?lib=H01). Some morphological types of micro-litters may have been sampled but were not defined by the protocole applied during the survey. They are represented as « undefined micro-litter items ». Warnings: - the absence of data on the map does not necessarily mean that they do not exist, but that no information has been entered in the National Oceanographic Data Centre (NODC) for this area. - since 03/07/2023, the preferred label « Undefined micro-litter items » has been integrated into the H01 library whereas the labels « microplastic items », « non-plastic man-made micro-particles (e.g. glass, metal, tar) » and «non-plastic filaments (natural fibres, rubber) » have been deprecated. When defined, the material or polymer type can be checked directly in the source data.
-
The flat oyster Ostrea edulis is a European native species that once covered vast areas in the North Sea, on the Atlantic coast and in other European coastal waters including the Mediterranean region. All these populations have been heavily fished by dredging over the last three centuries. More recently, the emergence of parasites combined with the proliferation of various predators and many human-induced additional stressors have caused a dramatic decrease in the last remaining flat oyster populations. Today, this species has disappeared from many locations in Europe and is registered on the OSPAR (Oslo-Paris Convention for the Protection of the Marine environment of the North-East Atlantic) list of threatened and/or declining species (see https://www.ospar.org/work-areas/bdc/species-habitats/list-of-threatened-declining-species-habitats). In that context, since 2018, the Flat Oyster REcoVERy project (FOREVER) has been promoting the reestablishment of native oysters in Brittany (France). This multi-partner project, involving the CRC (Comité Régional de la Conchyliculture), IFREMER (Institut Français de Recherche pour l’Exploitation de la Mer), ESITC (École Supérieure d’Ingénieurs des Travaux de la Construction) Caen and Cochet Environnement, has consisted of (1) inventorying and evaluating the status of the main wild flat oyster populations across Brittany, (2) making detailed analysis of the two largest oyster beds in the bays of Brest and Quiberon to improve understanding of flat oyster ecology and recruitment variability and to suggest possible ways of improving recruitment, and (3) proposing practical measures for the management of wild beds in partnership with members of the shellfish industry and marine managers. the final report of this project is available on Archimer : https://doi.org/10.13155/79506. This survey is part of the task 1 of the FOREVER, which took place between 2017-2021. Some previous data, acquired with the same methodology and within the same geographic area have been also added to this dataset. These data were collected during 30 intertidal and diving surveys in various bays and inlets of the coast of Bretagne. The localization of these surveys has been guided by the help of historical maps. In the field, the methodology was simple enough to be easily implemented regardless of the configuration of the sampled site. The intertidal survey was conducted at very low tide (tidal range > 100) to sample the 0-1m level. Sampling was carried out randomly or systematically following the low water line. Where possible (in terms of visibility and accessibility), dive surveys were also carried out (0-10m depth), along 100m transects, using the same methodology of counting in a 1m2 quadrat. As often as possible, geo-referenced photographs were taken to show the appearance, density and habitat where Ostrea edulis was present. All these pictures are available in the image bank file. Overall, this dataset contains a total of 300 georeferenced records, where flat oysters have been observed. The dataset file contains also information concerning the surrounding habitat description and is organized according the OSPAR recommendations. This publication gives also a map, under a kml format showing each occurrence and its characteristics. This work was done in the framework of the following research project: " Inventaire, diagnostic écologique et restauration des principaux bancs d’huitres plates en Bretagne : le projet FOREVER. Contrat FEAMP 17/2215675".
-
The ICES Working Group on Fisheries Benthic Impact and Trade-offs (WGFBIT) has developed an assessment framework based on the life history trait longevity, to evaluate the benthic impact of fisheries at the regional scale. In order to apply this framework to the Mediterranean sea, several Mediterranean longevity databases were merged together with existing North-East Atlantic ones to develop a common database. Longevity was fuzzy coded into four longevity classes: <1, 1-3, 3-10 and >10 years. Both benthic mega and macrofauna organisms are included in this dataset. Further details about both the purpose and the methodology may be found in ICES (2022) and Cuyvers et al. (2023). The result of the final dataset merging is one dataset containing the fuzzy coded average longevity (and standard deviation) for 2264 taxa and for each, the number of databases used.
-
As part of the marine water quality monitoring of the “Pertuis” and the “baie de l’Aiguillon” (France), commissioned by the OFB and carried out by setec énergie environnement, three monitoring stations were installed. Two of them were set up at the mouths of the Charente and Seudre rivers on February 6 and 27, 2019, respectively, while a third was deployed in the Bay of Aiguillon on March 24, 2021. The dataset presented here concerns the station installed in the Bay of Aiguillon. Measurements are organized into .csv files, with one file per year. Data is collected using a WiMO multiparameter probe, which records the following parameters: • Temperature (-2 to 35 °C) • Conductivity (0 to 100 mS/cm) • Pressure (0 to 30 m) • Turbidity (0 to 4000 NTU) • Dissolved Oxygen (0 to 23 mg/L & 0 to 250 %) • Fluorescence (0 to 500 ppb)
Catalogue PIGMA