2025
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
Scale
Resolution
-
The BioSWOT-Med campaign (Doglioli et al., 2023) was conducted aboard R/V L’Atalante from April 20 to May 15, 2023 in the Northwestern Mediterranean Sea, in the region of the North Balearic Front (NBF) to study interactions between fine-scale oceanic circulation and biogeochemical processes. Three water masses were sampled across the NBF, northern ('A'), southern ('B'), and frontal ('F'). Each Lagrangian station consisted of a 24-hour sampling period following the displacement of a water parcel (Doglioli et al., 2024). Vertical profiles down to 500 m were collected every 6 hours at 06:00 ('T1'), 12:00 ('T2'), 18:00 ('T3'), and 00:00 ('T4') UTC, for a total of 28 Lagrangian stations: first between April~24-28 (A1, F1, B1), and again between May~4-7 (B2, F2, A2), with a final station in southern waters (B3) on May~12-13. B2 and B3 stations were located inside an anticyclonic eddy. Hydrological profiles were obtained using a Sea-Bird CTD, with data averaged to a 1~m vertical resolution, they include potential temperature (°C), practical salinity, fluorescence-derived chlorophyll-a (µg/L) and oxygen (µmol/kg). Samples for nitrate + nitrite and phosphate (µM) were collected from Niskin bottles and analyzed onboard within 2-12~hours using a segmented flow analyzer (AAIII HR Seal Analytical) following (Aminot et al., 2007). Quantification limits (QL) were 0.05 µM for nitrate and 0.02 µM for phosphate. Phosphate concentrations at a nanomolar level analyses were performed in the laboratory using a high-sensitivity method combining a 1 m Liquid Waveguide Capillary Cell (LWCC) and an auto-analyzer (Zhang et al. 2002), achieving a detection limit of 0.002µM. A BGC-Argo float (WMO: 1902605 - Provor CTS4 SUNA) equipped with a CTD and SUNA nitrate sensor was deployed near station B2 and sampled the anticyclonic eddy. To better resolve the photic and nutricline layers, the standard sampling cycle was modified to a 6-hour frequency, reaching depths of 300-400~m. The BGC-Argo float nitrate dataset spans May~2-16 and includes 55~profiles, with a 0.5 µM limit of quantification. It passed through a nitrate calibration procedure against 8 ship-made profiles at B2 and B3. Data export in NetCDF format - Dataset at the 7 Lagrangian stations (28 vertical profiles for each variable, 4 at each station): ‘BioSWOT-Med_LS_Date_Time.nc’ (with day, time, longitude and latitude); ‘BioSWOT-Med_LS_Nutrients.nc’ (with nitrate, phosphate and phosphate at nanomolar level concentrations and depths); 'BioSWOT-Med_LS_CTD.nc' (with temperature in situ, practical salinity, chlorophyll-a and oxygen concentrations, photosynthetically active radiations and depth). - Dataset of the BGC-Argo float including 55 vertical profiles recorded between May 2 and 16: 'BioSWOT-Med_BGC-Argo' (with day and time, longitude, latitude; nitrate concentrations with associated depth; temperature in situ and practical salinity associated depth; chlorophyll-a concentrations with associated predepthssure; and oxygen concentrations with associated depth). Contact list Aude Joël (aude.joel@mio.osupytheas.fr), Sandra Nunige (sandra.nunige@mio.osupytheas.fr, for ship-made nutrient dataset), Riccardo Martellucci (rmartellucci@ogs.it, for the BGC-Argo float dataset) and Andrea Doglioli (andrea.doglioli@mio.osupytheas.fr, for the BioSWOT-Med cruise). References Aminot, A., & Kérouel, R. 2007. Dosage automatique des nutriments dans les eaux marines: méthodes en flux continu. Méthodes d’analyse en milieu marin. Ifremer. Doglioli, A.M., & Gregori, G. 2023. BioSWOT-Med cruise, RV L’Atalante. doi:10.17600/18002392. Doglioli, A., Grégori, G., D’Ovidio, F., Bosse, P. E., A., Carlotti, F., Lescot, M.,. . . Waggonet, E. (2024). Bioswot med. biological applicati.ons of the satellite surface water and ocean topography in the mediterranean. ref. rapport de campagne. université aix-marseille. (doi:10.13155/100060) Zhang, J.Z., & Chi, J. 2002. Automated analysis of nanomolar concentrations of phosphate in natural waters with liquid waveguide. Environ Sci Technol., 1;36(5), 1048–53. doi: 10.1021/es011094v.
-
The SOMLIT-Antioche observation station, located at 5 nautical miles from Chef de Baie harbor (La Rochelle) is part of the French monitoring network SOMLIT (https://www.somlit.fr/), accredited by the INSU-CNRS as a national Earth Science Observatory (Service National d’Observation : SNO), which comprises 12 observation stations distributed throughout France in coastal locations. It aims to detect long-term changes of these ecosystems under both natural and anthropogenic forcings. SOMLIT is part of the national research infrastructure for coastal ocean observation ILICO (https://www.ir-ilico.fr/?PagePrincipale&lang=en). The SOMLIT-Antioche station (46.0842 °N, 1.30833 °W) is located in the north-eastern part of the Bay of Biscay, halfway between the islands of Ré and Oléron, at the centre of what is commonly known as the Pertuis Charentais area, which correspond to a semi-enclosed shallow basin and includes four islands (Ré, Oléron, Aix and Madame) and three Pertuis (i.e., detroit) (Breton, Antioche and Maumusson). This 40m-deep site, with muddy to sandy marine bottoms, is submitted to a macro-tidal regime and is largely open to the prevailing westerly swells. It remains under a dominant oceanic/neritic influence, even though its winter/spring hydrological context is influenced by the diluted plumes of the Charente, Gironde and Loire rivers, but not by those of too small estuaries (Lay, Seudre and Sèvre Niortaise). SOMLIT-Antioche hydrological monitoring has been carried out by the LIENSs/OASU laboratory on a fortnightly basis since June 2011. Surface water samples are collected at high-tide during intermediate tides (70 ± 10 in SHOM units) on board the research vessel ‘L’Estran’ owned by La Rochelle University. Samples are analyzed for more than 16 core parameters: temperature, salinity, dissolved oxygen, pH, ammonia, nitrates, nitrites, phosphates, silicates, suspended matter, particulate organic carbone, particulate organic nitrogen, chlorophyll, delta15N, delta13C; pico- and nano- plankton. Measurements are carried out in accordance with the ISO/IEC 17025:2017 standard. Simultaneous monitoring of the micro-phytoplankton community (since 2013, SNO PHYTOBS: https://www.phytobs.fr/en) and monitoring of prokaryotic communities (Bacteria and Archaea) are also carried out on a monthly basis. Since 2019, seasonal observations of benthic invertebrate communities (SNO BenthObs : https://www.benthobs.fr/) have also been carried out. This monitoring is complementary to that carried out at hydrological stations in the pre-existing REPHY and DCE networks, some of which are located near marine farming areas (oyster and mussel farms).
-
Until recently, classical radar altimetry could not provide reliable sea level data within 10 km to the coast. However dedicated reprocessing of radar waveform together with geophysical corrections adapted for the coastal regions now allows to fill this gap at a large number of coastal sites. In the context of the Climate Change Initiative Sea Level project of the European Space Agency, we have recently performed a complete reprocessing of high resolution (20 Hz, i.e., 350m) along-track altimetry data of the Jason-1, Jason-2 and Jason-3 missions over January 2002 to June 2021 along the coastal zones of Northeast Atlantic, Mediterranean Sea, whole African continent, North Indian Ocean, Southeast Asia, Australia and North and South America. This reprocessing has provided valid sea level data in the 0-20 km band from the coast. More than 1000 altimetry-based virtual coastal stations have been selected and sea level anomalies time series together with associated coastal sea level trends have been computed over the study time span. In the coastal regions devoid from tide gauges (e.g., African coastlines), these virtual stations offer a unique tool for estimating sea level change close to the coast (typically up to 3 km to the coast but in many instances up to 1 km or even closer). Results show that at most of the virtual stations, the rate of sea level rise at the coast is similar to the rate offshore (15 km away from the coast). However, at some stations, the sea level rate in the last 3-4 km to the coast is either faster or slower than offshore.
-
The shapefile corresponds to areas where predicted bioregions were extrapolated for lack of benthic in-situ observations.
-
EMODnet Chemistry aims to provide access to marine chemistry data sets and derived data products concerning eutrophication, ocean acidification and contaminants. The chemicals chosen EMODnet Chemistry aims to provide access to marine chemistry datasets and derived data products concerning eutrophication, acidity and contaminants. The importance of the selected substances and other parameters relates to the Marine Strategy Framework Directive (MSFD). This aggregated dataset contains all unrestricted EMODnet Chemistry data on potential hazardous substances, despite the fact that some data might not be related to pollution (e.g. collected by deep corer). Temperature, salinity and additional parameters are included when available. It covers the Mediterranean Sea. Data were harmonised and validated by the ‘Hellenic Centre for Marine Research, Hellenic National Oceanographic Data Centre (HCMR/HNODC)’ in Greece. The dataset contains water, sediment and biota profiles and timeseries. The temporal coverage is 1974–2022 for water measurements, 1971–2023 for sediment measurements and 1979-2023 for biota measurements. Regional datasets concerning contaminants are automatically harvested and the resulting collections are harmonised and validated using ODV Software and following a common methodology for all sea regions ( https://doi.org/10.6092/8b52e8d7-dc92-4305-9337-7634a5cae3f4 ). Parameter names are based on P01 vocabulary, which relates to BODC Parameter Usage Vocabulary and is available at: https://vocab.nerc.ac.uk/search_nvs/P01/ . The harmonised dataset can be downloaded as as an ODV spreadsheet, which is composed of a metadata header followed by tab separated values. This spreadsheet can be imported into ODV Software for visualisation (more information can be found at: https://www.seadatanet.org/Software/ODV ). In addition, the same dataset is offered also as a txt file in a long/vertical format, in which each P01 measurement is a record line. Additionally, there are a series of columns that split P01 terms into subcomponents (substance, CAS number, matrix...).This transposed format is more adapted to worksheet applications (e.g. LibreOffice Calc).
-
The ODATIS Ocean Color MR product provides optical reflectance measurements as well as related physical, subsurface and biogeochemical parameters at 300 m spatial resolution along the entire French metropolitan coastal zone, according to the criteria defined by the ODATIS Scientific Expert Consortium (CES) dedicated to ocean color : https://www.odatis-ocean.fr/activites/consortium-dexpertise-scientifique/ces-couleur-de-locean. Product processing is performed from Level 1 to Level 3, and is reprojected on a regular square grid format. Data are temporally aggregated and provided as daily, 8 day and monthly products. The "Basic" version of the ODATIS MR product includes data from the MODIS sensor processed with the "NIR/SWIR" atmospheric correction method (Wang and Shi, 2007), as well as data from the MERIS and OLCI-A/B sensors processed with the Polymer atmospheric correction (Hygeos, https://www.hygeos.com/polymer). List of available parameters for each sensor: • MODIS : NRRS555, CHL-OC5, SPM-G, CDOM, T-FNU, SST-NIGHT • OLCI-A/B / MERIS : NRRS560, CHL-OC5, SPM-G, CDOM, T-FNU
-
The Southern Ocean plays a fundamental role in regulating the global climate. This ocean also contains a rich and highly productive ecosystem, potentially vulnerable to climate change. Very large national and international efforts are directed towards the modeling of physical oceanographic processes to predict the response of the Southern Ocean to global climate change and the role played by the large-scale ocean climate processes. However, these modeling efforts are greatly limited by the lack of in situ measurements, especially at high latitudes and during winter months. The standard data that are needed to study ocean circulation are vertical profiles of temperature and salinity, from which we can deduce the density of seawater. These are collected with CTD (Conductivity-Temperature-Depth) sensors that are usually deployed on research vessels or, more recently, on autonomous Argo profilers. The use of conventional research vessels to collect these data is very expensive, and does not guarantee access to areas where sea ice is found at the surface of the ocean during the winter months. A recent alternative is the use of autonomous Argo floats. However, this technology is not easy to use in glaciated areas. In this context, the collection of hydrographic profiles from CTDs mounted on marine mammals is very advantageous. The choice of species, gender or age can be done to selectively obtain data in particularly under-sampled areas such as under the sea ice or on continental shelves. Among marine mammals, elephant seals are particularly interesting. Indeed, they have the particularity to continuously dive to great depths (590 ± 200 m, with maxima around 2000 m) for long durations (average length of a dive 25 ± 15 min, maximum 80 min). A Conductivity-Temperature-Depth Satellite Relay Data Logger (CTD-SRDLs) has been developed in the early 2000s to sample temperature and salinity vertical profiles during marine mammal dives (Boehme et al. 2009, Fedak 2013). The CTD-SRDL is attached to the seal on land, then it records hydrographic profiles during its foraging trips, sending the data by satellite ARGOS whenever the seal goes back to the surface.While the principle intent of seal instrumentation was to improve understanding of seal foraging strategies (Biuw et al., 2007), it has also provided as a by-product a viable and cost-effective method of sampling hydrographic properties in many regions of the Southern Ocean (Charrassin et al., 2008; Roquet et al., 2013).
-
This dataset contains all satellite altimeter wave heights above 9 m, from the following satellite missions: ERS-1, ERS-2, Topex-Poseidon (Topex only), Envisat, SARAL, Jason-1, Jason-2, Jason-3, Sentinel-3A, Sentinel-3B, Sentinel-6A, Cryosat-2, CFOSAT, SWOT. Storm event identification used the DetectHsStorm package developed by M. De Carlo and F. Ardhuin ( https://github.com/ardhuin/) . This data can be combined with modeled storm tracks (see F. Ardhuin, M. De Carlo, Storm tracks based on wave heights from LOPS WAVEWATCH III hindcast and ERA5 reanalysis, years 1991-2024, SEANOE (2025). doi: 10.17882/105148 )
-
The raster corresponds to the predicted Mediterranean bioregions of megabenthic communities.
-
Sardine physiological measurments from september to november 2020
Catalogue PIGMA