Creation year

2025

334 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
Scale
Resolution
From 1 - 10 / 334
  • A world deep displacement dataset comprising more than 1600 000 Argo floats deep displacements, has been produced from the global Argo float database (GDAC). ANDRO dataset was completed over the period 2000-2009, then was partially but yearly updated since 2010. ANDRO actual contents and format is described in the user guide, which must be carefully read before using ANDRO (ANDRO format is also described in Ollitrault M. et al (2013)). One important feature of ANDRO is that the pressures measured during float drifts at depth, and suitably averaged are preserved in ANDRO (see Figure 2). To reach this goal, it was necessary to reprocess most of the Argo raw data, because of the many different decoding versions (roughly 100) not always applied by the DACs to the displacement data because they were mainly interested in the p,t,S profiles. The result of our work was the production of comprehensive files, named DEP (for déplacements in French), containing all the possibly retrievable float data. For detailed information and status of the last released ANDRO product, please visit the dedicated Argo France web page: https://www.umr-lops.fr/SNO-Argo/Products/ANDRO-Argo-floats-displacements-Atlas

  • In order to better characterize the population structure of common dolphins (Delphinus delphis) in the Bay of Biscay, a single digest RADseq (SbfI enzyme) protocol was used to obtain paired-end, 150bp NGS sequences on the Illumina NovaSeq 6000 sequencing platform. D. delphis samples from the Western North Atlantic, and samples from three other delphinid species were included as outgroups.

  • The present repository makes available the model, material and outputs of the ISIS-Fish modeling work showcased in the peer-reviewed scientific article by Bastardie et al. 2025. As part of the SEAwise research project (seawiseproject.org), we used an ISIS-Fish database (Mahevas et al 2003, Pelletier et al. 2009, isis-fish.org) previously developed within the MACCO project which describes the mixed demersal fishery in the Bay of Biscay. For this application, the spatial extent of the fishery is the Bay of Biscay, defined here by ICES divisions 8a, 8b and 8d and the resolution chosen is 1/16 ICES statistical rectangle. The biological module (Vajas et al. 2024) includes 7 species of economic interest in the mixed demersal fishery: European hake (Merluccius merluccius), common sole (Solea solea), Norway lobster (Nephrops norvegicus), megrim (Lepidorhombus whiffiagonis), anglerfish (Lophius piscatorius) and two ray species (Raja clavata, Leucoraja naevus). The fishing activities module (Mahevas et al. 2024) is made up of 41 demersal fleets (including all French vessels < 12 meters and > 12 meters fishing in this area, Spanich, UK and Belgium fleets) and 431 métiers (combination of a gear, location and mix of target species) catching these 7 species, as target or bycatch. Monthly effort of a fleet distributes among the possible métiers (those historically practiced). The biological and fishing activity modules are identical to the published version. The original model used here has been calibrated on historical catch data 2015-2018 by tuning accessibility and catchability parameters. In the present application the Bay of Biscay model is used to investigate the spatial- and effort- based fisheries management strategies. Consistently with for a task of the SEAwise project (Bastardie et al. 2024) simulations were conducted from 2021 onwards, projecting the effect of an implementation of 3 different closures from 2022 to 2050, under current fishing effort conditions or in a context of fishing effort reduction. Outcomes of these simulations are averaged over short/medium (10 year horizon) and long-term period (20 year horizon). The data project includes: 1) the database including the biological module and fishing activity module; 2) 8 .properties files, each corresponding to one combination of management measure and closure, to restore the simulations parameters in the ISIS-Fish interface and reproduce the simulation runs; 3) the .java scripts to force effort dynamics and simulate spatio-temporal closures, as well as generate the main output files - they will be called by the ISIS-Fish software once the simulations restored 4) the .rds containing the main outputs of the simulations and the associated .html document displaying the R code to compute the indices of interest at different levels of aggregation and reproduce the figures in Bastardie et al. 2025. All files are provided in the Zip. Associated with this material, a study summary and a readme .docx are provided. The first one provides context on the present work and describes the model and simulations' design. The second provides guidelines to reproduce the simulations and their derived outcomes from the data project material made available in this repository. They are both directly downloadable from this repository and are also copied to the zipped folder containing the data project. All the data are reproducible using isis-fish-4.4.8.1 (isis-fish.org; available at forge.codelutin.com) and R 4.2.0.

  • This dataset contains the biological outputs of a global ocean simulation coupling dynamics and biogeochemistry at ¼° over the year 2019. The simulation has been performed using the coupled circulation/ecosystem model NEMO/PISCES (https://www.nemo-ocean.eu/), which is here enhanced to perform an ensemble simulation with explicit simulation of modeling uncertainties in the physics and in the biogeochemistry. This dataset is one of the 40 members of the ensemble simulation. This study was part of the Horizon Europe project SEAMLESS (https://seamlessproject.org/Home.html), with the general objective of improving the analysis and forecast of ecosystem indicators.   See Popov et al. (https://os.copernicus.org/articles/20/155/2024/) for more details on the study.

  • The glider operations in the MOOSE network started to be deployed regularly in 2010 in the North Western Mediterranean Sea, thanks to the setup of national glider facilities at DT-INSU/Ifremer (http://www.dt.insu.cnrs.fr/gliders/gliders.php) and with the support of the European project FP7-PERSEUS. Two endurance lines are operated: MooseT00 (Nice-Calvi; Ligurian Sea) and MooseT02 (Marseille-Menorca; Gulf of Lion). The all dataset here corresponds to raw data in the EGO format.

  • '''DEFINITION''' Estimates of Ocean Heat Content (OHC) are obtained from integrated differences of the measured temperature and a climatology along a vertical profile in the ocean (von Schuckmann et al., 2018). The products used include three global reanalyses: GLORYS, C-GLORS, ORAS5 (GLOBAL_MULTIYEAR_PHY_ENS_001_031) and two in situ based reprocessed products: CORA5.2 (INSITU_GLO_PHY_TS_OA_MY_013_052) , ARMOR-3D (MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012). Additionally, the time series based on the method of von Schuckmann and Le Traon (2011) has been added. The regional OHC values are then averaged from 60°S-60°N aiming i) to obtain the mean OHC as expressed in Joules per meter square (J/m2) to monitor the large-scale variability and change. ii) to monitor the amount of energy in the form of heat stored in the ocean (i.e. the change of OHC in time), expressed in Watt per square meter (W/m2). Ocean heat content is one of the six Global Climate Indicators recommended by the World Meterological Organisation for Sustainable Development Goal 13 implementation (WMO, 2017). '''CONTEXT''' Knowing how much and where heat energy is stored and released in the ocean is essential for understanding the contemporary Earth system state, variability and change, as the ocean shapes our perspectives for the future (von Schuckmann et al., 2020). Variations in OHC can induce changes in ocean stratification, currents, sea ice and ice shelfs (IPCC, 2019; 2021); they set time scales and dominate Earth system adjustments to climate variability and change (Hansen et al., 2011); they are a key player in ocean-atmosphere interactions and sea level change (WCRP, 2018) and they can impact marine ecosystems and human livelihoods (IPCC, 2019). '''CMEMS KEY FINDINGS''' Since the year 2005, the upper (0-700m) near-global (60°S-60°N) ocean warms at a rate of 0.6 ± 0.1 W/m2. Note: The key findings will be updated annually in November, in line with OMI evolutions. '''DOI (product):''' https://doi.org/10.48670/moi-00234

  • This visualization product displays the density of floating micro-litter per net normalized per m³ per year from research and monitoring protocols. EMODnet Chemistry included the collection of marine litter in its 3rd phase. Before 2021, there was no coordinated effort at the regional or European scale for micro-litter. Given this situation, EMODnet Chemistry proposed to adopt the data gathering and data management approach as generally applied for marine data, i.e., populating metadata and data in the CDI Data Discovery and Access service using dedicated SeaDataNet data transport formats. EMODnet Chemistry is currently the official EU collector of micro-litter data from Marine Strategy Framework Directive (MSFD) National Monitoring activities (descriptor 10). A series of specific standard vocabularies or standard terms related to micro-litter have been added to SeaDataNet NVS (NERC Vocabulary Server) Common Vocabularies to describe the micro-litter. European micro-litter data are collected by the National Oceanographic Data Centres (NODCs). Micro-litter map products are generated from NODCs data after a test of the aggregated collection including data and data format checks and data harmonization. A filter is applied to represent only micro-litter sampled according to research and monitoring protocols as MSFD monitoring. Densities were calculated for each net using the following calculation: Density (number of particles per m³) = Micro-litter count / Sampling effort (m³) When the number of micro-litters was not filled, it was not possible to calculate the density. Percentiles 50, 75, 95 & 99 have been calculated taking into account data for all years. Warning: the absence of data on the map does not necessarily mean that they do not exist, but that no information has been entered in the National Oceanographic Data Centre (NODC) for this area.

  • This dataset contains the dynamical outputs of a global ocean simulation coupling dynamics and biogeochemistry at ¼° over the year 2019. The simulation has been performed using the coupled circulation/ecosystem model NEMO/PISCES (https://www.nemo-ocean.eu/), which is here enhanced to perform an ensemble simulation with explicit simulation of modeling uncertainties in the physics and in the biogeochemistry. This dataset is one of the 40 members of the ensemble simulation. This study was part of the Horizon Europe project SEAMLESS (https://seamlessproject.org/Home.html), with the general objective of improving the analysis and forecast of ecosystem indicators.   See Popov et al. (https://os.copernicus.org/articles/20/155/2024/) for more details on the study.

  • This data set contains the gridded hydrographic and transport data for the biennial Go-Ship A25 Greenland–Portugal OVIDE section from 2002 to 2012. The properties and transports are mapped on a 7km x 1m grid. Using a common grid facilitates the comparison between the different occupations of the line and the averaging. This data set was used in Daniault et al. (2016, Progress in Oceanography) to which the reader is referred for a description of the gridding method.

  • A 3D numerical model of the Adour Estuary and the Basque Coast was developed with TELEMAC3D (v8p0) from the open TELEMAC-MASCARET system. The hydrodynamic model was validated with field data and reproduced satisfactorily tide, current and salinity observations. Please refer to the following references for further details : - Defontaine, S., Walther, R., & Sous, D. (2022). Variability of subtidal flow in a narrow meandering stratified estuary. Estuarine, Coastal and Shelf Science, 266, 107716. https://doi.org/10.1016/j.ecss.2021.107716 - Defontaine, S. (2019). Saline structure, circulation and suspended sediment transport in a channelized salt-wedge estuary: the Adour river estuary (Doctoral dissertation, Université de Pau et des Pays de l'Adour).