Keyword

Oceanographic geographical features

1315 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 1315
  • Sediment Profile Images (SPIs) are commonly used to map physical, biological and chemical/nutrient gradients in benthic habitats. SpiArcBase is a software that has been developed for the analysis of Sediment Profile Images (SPIs). It has been conceived to improve the objectivity of extracted information (especially the apparent Redox Potential Discontinuity (aRPD). The software presents a graphical user interface designed to enhance the interpretation of features observed on SPIs in an objective manner and to facilitate image management and structures visualization via a data base.The software also allows for the storage of generated data and the automatic computation of a benthic habitat quality index. The facilities provided within JERICONext include access to the software through free downloading and assistance in its utilization.

  • SpiArcBase is a software developed for the treatment of Sediment Profile images (SPIs). Sediment Profile Images (SPIs) are widely used for benthic ecological quality assessment under various environmental stressors. The processing of the information contained in SPIs is slow and its interpretation is largely operator dependent. SpiArcBase enhances the objectivity of the information extracted from SPIs, especially for the assessment of the apparent Redox Potential Discontinuity (aRPD). This software allows the user to create and manage a database containing original SPIs and corresponding derived pieces of information. Once you have downloaded it, you can ask for help and stablish a helpdesk.

  • A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis is produced daily on a 0.25 degree grid at the NOAA National Centers for Environmental Information. This product uses optimal interpolation (OI) by interpolating and extrapolating SST observations from different sources, resulting in a smoothed complete field. The sources of data are satellite (AVHRR) and in situ platforms (i.e., ships, buoys, and Argo floats above 5m depth), and the specific datasets employed may change over time. In the regions with sea-ice concentration higher than 30%, freezing points of seawater are used to generate proxy SSTs. A preliminary version of this file is produced in near-real time (1-day latency), and then replaced with a final version after 2 weeks. The v2.1 is updated from the AVHRR_OI-NCEI-L4-GLOB-v2.0 data. Major improvements include: 1) In-Situ ship and buoy data changed from the NCEP Traditional Alphanumeric Codes (TAC) to the NCEI merged TAC + Binary Universal Form for the Representation (BUFR) data, with large increase of buoy data included to correct satellite SST biases; 2) Addition of Argo float observed SST data as well, for further correction of satellite SST biases; 3) Satellite input from the METOP-A and NOAA-19 to METOP-A and METOP-B, removing degraded satellite data; 4) Revised ship-buoy SST corrections for improved accuracy; and 5) Revised sea-ice-concentration to SST conversion to remove warm biases in the Arctic region (Banzon et al. 2020). These updates only apply to granules after Jan. 1st, 2016. The data pre 2016 are still the same as v2.0 except for metadata upgrades.

  • A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis produced daily on a 0.25 degree grid at the NOAA National Centers for Environmental Information. This product uses optimal interpolation (OI) by interpolating and extrapolating SST observations from different sources, resulting in a smoothed complete field. The sources of data are satellite (AVHRR) and in situ platforms (i.e., ships and buoys), and the specific datasets employed may change over. At the marginal ice zone, sea ice concentrations are used to generate proxy SSTs. A preliminary version of this file is produced in near-real time (1-day latency), and then replaced with a final version after 2 weeks. Note that this is the AVHRR-ONLY (AVHRR-OI), available from September 1, 1981, but there is a companion SST product that includes microwave satellite data, available from June 2002.

  • These files contain NASA produced skin sea surface temperature (SST) products from the Infrared (IR) channels of the Visible and Infrared Imager/Radiometer Suite (VIIRS) onboard the Suomi-NPP satellite. VIIRS is a multi-disciplinary instrument that is also being flown on the Joint Polar Satellite System (JPSS) series of spacecraft, of which NOAA-20 is the first. JPSS is a multi-agency program that consolidates the polar orbiting spacecraft of NASA and the National Oceanic and Atmospheric Administration (NOAA). Suomi-NPP is the initial spacecraft in this series, and VIIRS is the successor to MODIS for Earth science data. VIIRS has 22 spectral bands ranging from 412 nm to 12 micron . There are 16 moderate-resolution bands (750m at nadir), 5 image-resolution bands (375 m), and one day-night band (DNB). VIIRS uses on-board pixel aggregation to reduce the growth in size of pixels away from nadir. Two SST products are contained in these files. The first is a skin SST produced separately for day and night observations, derived from the long wave IR 11 and 12 micron wavelength channels, using a modified nonlinear SST algorithm intended to provide continuity of SST products from heritage and current NASA sensors. At night, a second triple channel SST product is generated using the 3.7 , 11 and 12 micron IR channels, identified as SST_triple. Due to the sun glint in the 3.7 micron SST_triple can only be used at night. VIIRS L2P SST data have a 750 spatial resolution at nadir and are stored in ~288 five minute granules per day. Full global coverage is obtained each day. The production of VIIRS NASA L2P SST files is part of the Group for High Resolution Sea Surface Temperature (GHRSST) project and is a joint collaboration between the NASA Jet Propulsion Laboratory (JPL), the NASA Ocean Biology Processing Group (OBPG), and the Rosenstiel School of Marine and Atmospheric Science (RSMAS). Researchers at RSMAS were responsible for sea surface temperature algorithm development, error statistics and quality flagging, while the OBPG, as the NASA ground data system, is responsible for the production of VIIRS ocean products. JPL acquires VIIRS ocean granules from the OBPG and reformats them to the GHRSST L2P netCDF specification with complete metadata and is the official Physical Oceanography Data Archive (PO.DAAC) for SST. In mid-August, 2018, the RSMAS involvement in the VIIRS SST project ceased, and the subsequent fields are not maintained.The R2016.2 supersedes the previous v2016.0 datasets which can be found at https://doi.org/10.5067/GHVRS-2PN16

  • A Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) derived from the Advanced Very High Resolution Radiometer (AVHRR) on the European Meteorological Operational-B (MetOp-B) platform (launched 17 Sep 2012). The European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), Ocean and Sea Ice Satellite Application Facility (OSI SAF) is producing SST products in near real time from Metop/AVHRR and SNPP/VIIRS. Global AVHRR level 1b data are acquired at Meteo- France/Centre de Meteorologie Spatiale (CMS) through the EUMETSAT/EUMETCAST system. NAR SNPP/VIIRS level 0 data are acquired through direct readout and converted into l1b at CMS. SST is retrieved from the AVHRR and VIIRS infrared channels using a multispectral algorithm. This product is delivered as four six hourly collated files per day on a regular 2km grid. The product format is compliant with the GHRSST Data Specification (GDS) version 2.

  • A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis produced daily on a 0.09-degree grid at Remote Sensing Systems. This product uses optimal interpolation (OI) from both microwave (MW) sensors including the Global Precipitation Measurement (GPM) Microwave Imager (GMI), the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), the NASA Advanced Microwave Scanning Radiometer-EOS (AMSRE), the Advanced Microwave Scanning Radiometer 2 (AMSR2) onboard the GCOM-W1 satellite, and WindSat operates on the Coriolis satellite, and infrared (IR) sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Aqua and Terra platform and the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi-NPP satellite. The through-cloud capabilities of microwave radiometers provide a valuable picture of global sea surface temperature (SST) while infrared radiometers (i.e., MODIS) have a higher spatial resolution. This analysis does not use any in situ SST data such as drifting buoy SST. Comparing with previous version 4.0 dataset, the version 5.0 has made the updates in several areas, including the diurnal warming model, the sensor-specific error statistics (SSES) for each microwave sensor, the sensor correlation model, and the quality mask. Version Description:

  • A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis, produced daily on an operational basis at the Australian Bureau of Meteorology (BoM) using optimal interpolation (OI) on a global 0.25 degree grid. This Global Australian Multi-Sensor SST Analysis (GAMSSA) v1.0 system blends satellite SST observations from passive infrared and passive microwave radiometers with in situ data from ships, drifting buoys and moorings from the Global Telecommunications System (GTS). SST observations that have experienced recent surface wind speeds less than 6 m/s during the day or less than 2 m/s during night are rejected from the analysis. The processing results in daily foundation SST estimates that are largely free of nocturnal cooling and diurnal warming effects. Sea ice concentrations are supplied by the NOAA/NCEP 12.7 km sea ice analysis. In the absence of observations, the analysis relaxes to the Reynolds and Smith (1994) Monthly 1 degree SST climatology for 1961 - 1990.

  • A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P data set containing multi-channel Sea Surface Temperature (SST) retrievals derived in real-time from the Advanced Very High Resolution Radiometer (AVHRR) level-1B data from the Meteorological Operational-A (MetOp-A) satellite. The SST data in this data set are used operationally in oceanographic analyses and forecasts by the US Naval Oceanographic Office (NAVO). The MetOp satellite program is a European multi-satellite program to provide weather data services for monitoring climate and improving weather forecasts. MetOp-A, MetOp-B and Metop-C were respectively launched on 19 Oct 2006, 17 September 2012 and 7 November 2018. The program was jointly established by the European Space Agency (ESA) and the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) with the US National Oceanic and Atmospheric Administration (NOAA) contributing the AVHRR sensor. AVHRR instruments measure the radiance of the Earth in 5 (or 6) relatively wide spectral bands. The first two are centered around the red (0.6 micron) and near-infrared (0.9 micron) regions, the third one is located around 4 (3.6) micron, and the last two sample the emitted thermal radiation, around 11 and 12 micron, respectively. The legacy 5 band instrument is known as AVHRR/2 while the more recent version, the AVHRR/3 (first carried on the NOAA-15 platform), acquires data in a 6th channel located at 1.6 micron. Typically, the 11 and 12 micron channels are used to derive SST sometimes in combination with the 3.5 micron channel. The swath of the AVHRR sensor is a relatively large 2400 km. All MetOp platforms are sun synchronous and generally view the same earth location twice a day (latitude dependent). The ground native resolution of the AVHRR instruments is approximately 1.1 km at nadir and degrades off nadir. This particular data set is produced from legacy Global Area Coverage (GAC) data that are derived from a sample averaging of the full resolution global AVHRR data. Four out of every five samples along the scan line are used to compute on average value and the data from only every third scan line are processed, yielding an effective 4 km spatial resolution at nadir. The v2.0 is the updated version from current v1.0 with extensive algorithm improvements and upgrades. The major improvements include: 1) Significant changes in contaminant/cloud detection; 2) Increased the spatial resolution from 9 km to 4 km; 3) Updated compliance with GDS2, ACDD 1.3, and CF 1.6; and 4) Removed the dependency on the High-resolution Infrared Radiation Sounder (HIRS) sensor (only available to MetOp-A/B), thus allowing for the consistent inter-calibration and the processing of MetOp-A/B/C data

  • A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P data set containing multi-channel Sea Surface Temperature (SST) retrievals derived in real-time from the Advanced Very High Resolution Radiometer (AVHRR) level-1B data from the Meteorological Operational-C (MetOp-C) satellite. The SST data in this data set are used operationally in oceanographic analyses and forecasts by the US Naval Oceanographic Office (NAVO). The MetOp satellite program is a European multi-satellite program to provide weather data services for monitoring climate and improving weather forecasts. MetOp-A, MetOp-B and Metop-C were respectively launched on 19 Oct 2006, 17 September 2012 and 7 November 2018. The program was jointly established by the European Space Agency (ESA) and the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) with the US National Oceanic and Atmospheric Administration (NOAA) contributing the AVHRR sensor. AVHRR instruments measure the radiance of the Earth in 5 (or 6) relatively wide spectral bands. The first two are centered around the red (0.6 micron) and near-infrared (0.9 micron) regions, the third one is located around 4 (3.6) micron, and the last two sample the emitted thermal radiation, around 11 and 12 micron, respectively. The legacy 5 band instrument is known as AVHRR/2 while the more recent version, the AVHRR/3 (first carried on the NOAA-15 platform), acquires data in a 6th channel located at 1.6 micron. Typically, the 11 and 12 micron channels are used to derive SST sometimes in combination with the 3.5 micron channel. The swath of the AVHRR sensor is a relatively large 2400 km. All MetOp platforms are sun synchronous and generally view the same earth location twice a day (latitude dependent). The ground native resolution of the AVHRR instruments is approximately 1.1 km at nadir and degrades off nadir. This particular data set is produced from legacy Global Area Coverage (GAC) data that are derived from a sample averaging of the full resolution global AVHRR data. Four out of every five samples along the scan line are used to compute on average value and the data from only every third scan line are processed, yielding an effective 4 km spatial resolution at nadir. The v2.0 is the updated version from current v1.0 with extensive algorithm improvements and upgrades. The major improvements include: 1) Significant changes in contaminant/cloud detection; 2) Increased the spatial resolution from 9 km to 4 km; 3) Updated compliance with GDS2, ACDD 1.3, and CF 1.6; and 4) Removed the dependency on the High-resolution Infrared Radiation Sounder (HIRS) sensor (only available to MetOp-A/B), thus allowing for the consistent inter-calibration and the processing of MetOp-A/B/C data Version Description: