Oceanographic geographical features
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
This dataset provides extreme waves (Hs: significant wave height, Hb:breaking wave height, a proxy of the wave energy flux) simulated with the WWIII model, and extracted along global coastlines. Two simulations, including or not Tropical Cyclones (TCs) in the forcing wind field, are provided.
-
SpiArcBase is a software developed for the treatment of Sediment Profile images (SPIs). Sediment Profile Images (SPIs) are widely used for benthic ecological quality assessment under various environmental stressors. The processing of the information contained in SPIs is slow and its interpretation is largely operator dependent. SpiArcBase enhances the objectivity of the information extracted from SPIs, especially for the assessment of the apparent Redox Potential Discontinuity (aRPD). This software allows the user to create and manage a database containing original SPIs and corresponding derived pieces of information. Once you have downloaded it, you can ask for help and stablish a helpdesk.
-
Sediment Profile Images (SPIs) are commonly used to map physical, biological and chemical/nutrient gradients in benthic habitats. SpiArcBase is a software that has been developed for the analysis of Sediment Profile Images (SPIs). It has been conceived to improve the objectivity of extracted information (especially the apparent Redox Potential Discontinuity (aRPD). The software presents a graphical user interface designed to enhance the interpretation of features observed on SPIs in an objective manner and to facilitate image management and structures visualization via a data base.The software also allows for the storage of generated data and the automatic computation of a benthic habitat quality index. The facilities provided within JERICONext include access to the software through free downloading and assistance in its utilization.
-
Daily air-sea heat fluxes dataset on the last 27 years (1992-2018). Global coverage with 0.25° resolution. Data is mainly coming from aggregated calibrated scatterometer datasets and numerical models. Main geophysical parameters are: sensible heat flux, latent heat flux, wind speed, SST, air temperature. Latest version : 4.1 released in June 2019.
-
A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature (SST) analysis produced daily on an operational basis at the Canadian Meteorological Center. This dataset merges infrared satellite SST at varying points in the time series from the Advanced Very High Resolution Radiometer (AVHRR) from NOAA-18,19, the European Meteorological Operational-A (METOP-A) and Operational-B (METOP-B), and microwave data from the Advanced Microwave Scanning Radiometer 2 (AMSR2) onboard the GCOM-W satellite in conjunction with in situ observations of SST from drifting buoys and ships from the ICOADS program. It uses the previous days analysis as the background field for the statistical interpolation used to assimilate the satellite and in situ observations. This dataset adheres to the GHRSST Data Processing Specification (GDS) version 2 format specifications.
-
A global 1 km Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in real-time from the Infrared Atmospheric Sounding Interferometer (IASI) on the European Meteorological Operational-A (MetOp-A)satellite (launched 19 Oct 2006). The European Organization for the Exploitation of Meteorological Satellites (EUMETSAT),Ocean and Sea Ice Satellite Application Facility (OSI SAF) is producing SST products in near realtime from METOP/IASI. The Infrared Atmospheric Sounding Interferometer (IASI) measures inthe infrared part of the electromagnetic spectrum at a horizontal resolution of 12 km at nadir up to40km over a swath width of about 2,200 km. With 14 orbits in a sun-synchronous mid-morningorbit (9:30 Local Solar Time equator crossing, descending node) global observations can beprovided twice a day. The SST retrieval is performed and provided by the IASI L2 processor atEUMETSAT headquarters. The product format is compliant with the GHRSST Data Specification(GDS) version 2.
-
A Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) derived from the Advanced Very High Resolution Radiometer (AVHRR) on the European Meteorological Operational-A (MetOp-A) platform (launched 19 Oct 2006). The European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), Ocean and Sea Ice Satellite Application Facility (OSI SAF) is producing SST products in near real time from Metop/AVHRR and SNPP/VIIRS. Global AVHRR level 1b data are acquired at Meteo-France/Centre de Meteorologie Spatiale (CMS) through the EUMETSAT/EUMETCAST system. NAR SNPP/VIIRS level 0 data are acquired through direct readout and converted into l1b at CMS. SST is retrieved from the AVHRR and VIIRS infrared channels using a multispectral algorithm. This product is delivered as four six hourly collated files per day on a regular 2km grid. The product format is compliant with the GHRSST Data Specification (GDS) version 2.
-
A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P data set containing multi-channel Sea Surface Temperature (SST) retrievals derived in real-time from the Advanced Very High Resolution Radiometer (AVHRR) level-1B data from the Meteorological Operational-C (MetOp-C) satellite. The SST data in this data set are used operationally in oceanographic analyses and forecasts by the US Naval Oceanographic Office (NAVO). The MetOp satellite program is a European multi-satellite program to provide weather data services for monitoring climate and improving weather forecasts. MetOp-A, MetOp-B and Metop-C were respectively launched on 19 Oct 2006, 17 September 2012 and 7 November 2018. The program was jointly established by the European Space Agency (ESA) and the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) with the US National Oceanic and Atmospheric Administration (NOAA) contributing the AVHRR sensor. AVHRR instruments measure the radiance of the Earth in 5 (or 6) relatively wide spectral bands. The first two are centered around the red (0.6 micron) and near-infrared (0.9 micron) regions, the third one is located around 4 (3.6) micron, and the last two sample the emitted thermal radiation, around 11 and 12 micron, respectively. The legacy 5 band instrument is known as AVHRR/2 while the more recent version, the AVHRR/3 (first carried on the NOAA-15 platform), acquires data in a 6th channel located at 1.6 micron. Typically, the 11 and 12 micron channels are used to derive SST sometimes in combination with the 3.5 micron channel. The swath of the AVHRR sensor is a relatively large 2400 km. All MetOp platforms are sun synchronous and generally view the same earth location twice a day (latitude dependent). The ground native resolution of the AVHRR instruments is approximately 1.1 km at nadir and degrades off nadir. This particular data set is produced from legacy Global Area Coverage (GAC) data that are derived from a sample averaging of the full resolution global AVHRR data. Four out of every five samples along the scan line are used to compute on average value and the data from only every third scan line are processed, yielding an effective 4 km spatial resolution at nadir. The v2.0 is the updated version from current v1.0 with extensive algorithm improvements and upgrades. The major improvements include: 1) Significant changes in contaminant/cloud detection; 2) Increased the spatial resolution from 9 km to 4 km; 3) Updated compliance with GDS2, ACDD 1.3, and CF 1.6; and 4) Removed the dependency on the High-resolution Infrared Radiation Sounder (HIRS) sensor (only available to MetOp-A/B), thus allowing for the consistent inter-calibration and the processing of MetOp-A/B/C data Version Description:
-
A Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the Eastern Atlantic Region from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on the Meteosat Second Generation (MSG-3) satellites (launched 5 July 2012). The European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), Ocean and Sea Ice Satellite Application Facility (OSI SAF) is producing SST products in near real time from MSG/SEVIRI. SEVIRI level 1.5 data are acquired at Meteo-France/Centre de Meteorologie Spatiale (CMS) through the EUMETSAT/EUMETCAST system. SST is retrieved from the SEVIRI infrared channels (10.8 and 12.0 micrometer) using a multispectral algorithm. Atmospheric profiles of water vapor and temperature from a numerical weather prediction model, together with a radiatiave transfer model, are used to correct the multispectral algorithm for regional and seasonal biases due to changing atmospheric conditions. Every 15 minutes slot is processed at full satellite resolution. The operational products are then produced by remapping over a 0.05 degree regular grid (60S-60N and 60W-60E) SST fields obtained by aggregating all 15 minute SST data available in one hour time, and the priority being given to the value the closest in time to the product nominal hour. The product format is compliant with the GHRSST Data Specification (GDS) version 2. Version Description:
-
A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in real-time from the Advanced Very High Resolution Radiometer (AVHRR) on the European Meteorological Operational-A (MetOp-A; launched 19 Oct 2006) ) satellite produced and used operationally in oceanographic analyses and forecasts by the US Naval Oceanographic Office (NAVO). The MetOp satellite program is a European undertaking providing weather data services for monitoring climate and improving weather forecasts. It was jointly established by the European Space Agency (ESA) and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) with a contribution by the US National Oceanic and Atmospheric Administration (NOAA) of an AVHRR sensor identical to those flying on the family of Polar Orbiting Environmental Satellites (POES). AVHRR instruments measure the radiance of the Earth in 5 (or 6) relatively wide spectral bands. The first two are centered around the red (0.6 micrometer) and near-infrared (0.9 micrometer) regions, the third one is located around 3.5 micrometer, and the last two sample the emitted thermal radiation, around 11 and 12 micrometers, respectively. The legacy 5 band instrument is known as AVHRR/2 while the more recent version, the AVHRR/3 (first carried on the NOAA-15 platform), acquires data in a 6th channel located at 1.6 micrometer. Typically the 11 and 12 micron channels are used to derive SST sometimes in combination with the 3.5 micron channel. The MetOp-A platform is sun synchronous generally viewing the same earth location twice a day (latitude dependent) due to the relatively large AVHRR swath of approximately 2400 km. The highest ground resolution that can be obtained from the current AVHRR instruments is 1.1 km at nadir. This particular dataset is produced from Global Area Coverage (GAC) data that are derived from an on-board sample averaging of the full resolution global AVHRR data. Four out of every five samples along the scan line are used to compute on average value and the data from only every third scan line are processed, yielding an effective 4 km resolution at nadir. Further binning and averaging of these pixels results in a final dataset resolution of 8.8 km.
Catalogue PIGMA