Keyword

stable isotopes

3 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
From 1 - 3 / 3
  • Crepidula fornicata is a common and widespread invasive gregarious species along the European coast. Among its life-history traits, well documented ontogenic changes in behavior (i.e., motile male to sessile female) suggest a potential shift in feeding strategy across its life stages. Considering the ecological significance of this species in colonized areas, understanding how conspecifics share the trophic resource is crucial. Using fatty acids (FA) and stable isotopes (SI) as complementary trophic markers, we conducted a field survey between late winter and spring to investigate the trophic niche of three ontogenic stages of C. fornicata that bear different sexual (male/female) and motility (motile/sessile) traits. Potential trophic sources were characterized by their pigment, FA and SI compositions and showed well discriminated compositions over the studied period. We showed that the biofilm covering C. fornicata shells harbored a higher biomass of primary producers (i.e., chlorophytes and diatoms) than the surrounding sediment. Over the studied period, we observed a covariation between the three ontogenic stages for both FA and SI compositions which suggest that the trophic niche of C. fornicata does not change significantly across its benthic life. During periods of low food availability, slipper limpets displayed an opportunistic suspension-feeding behaviour, relying on both fresh and detrital organic matter, likely coming from superficial sedimentary organic matter. However, during high food availability (i.e., spring phytoplankton bloom), all ontogenic stages largely benefited from this fresh supply of organic matter (pelagic diatoms in this case). The three ontogenic stages showed consistent differences in FA composition, and to a lesser extent in SI composition. These differences persist over time, as they originate from ontogenic physiological changes (differential growth rates, metabolic rate or gametogenesis) rather than diet discrepancies. This study revealed that multiple trophic markers allow high complementary to characterize organic matter as well as food partitioning between conspecific organisms.Crepidula fornicata is a common and widespread invasive gregarious species along the European coast. Among its life-history traits, well documented ontogenic changes in behavior (i.e., motile male to sessile female) suggest a potential shift in feeding strategy across its life stages. Considering the ecological significance of this species in colonized areas, understanding how conspecifics share the trophic resource is crucial. Using fatty acids (FA) and stable isotopes (SI) as complementary trophic markers, we conducted a field survey between late winter and spring to investigate the trophic niche of three ontogenic stages of C. fornicata that bear different sexual (male/female) and motility (motile/sessile) traits. Potential trophic sources were characterized by their pigment, FA and SI compositions and showed well discriminated compositions over the studied period. We showed that the biofilm covering C. fornicata shells harbored a higher biomass of primary producers (i.e., chlorophytes and diatoms) than the surrounding sediment. Over the studied period, we observed a covariation between the three ontogenic stages for both FA and SI compositions which suggest that the trophic niche of C. fornicata does not change significantly across its benthic life. During periods of low food availability, slipper limpets displayed an opportunistic suspension-feeding behaviour, relying on both fresh and detrital organic matter, likely coming from superficial sedimentary organic matter. However, during high food availability (i.e., spring phytoplankton bloom), all ontogenic stages largely benefited from this fresh supply of organic matter (pelagic diatoms in this case). The three ontogenic stages showed consistent differences in FA composition, and to a lesser extent in SI composition. These differences persist over time, as they originate from ontogenic physiological changes (differential growth rates, metabolic rate or gametogenesis) rather than diet discrepancies. This study revealed that multiple trophic markers allow high complementary to characterize organic matter as well as food partitioning between conspecific organisms.

  • This dataset gathers data used to infer the trophic structure and functioning of fish assemblages in the Eastern English Channel, the Bay of Biscay and the Gulf of Lions : - Biomass data, resulting from accoustic monitoring for pelagic species, or bottom trawling for demersal species, after extrapolation based on stratification scheme - Individual C and N isotopic ratios, length and mass, for all individuals considered - Individual energetic density values

  • Bivalves carbon and nitrogen elemental and isotopic ratios (δ13C, δ15N, C and N%, C:N) times series (1981-2021) from 33 sites in France. Bivalve species are the Pacific oyster Crassostrea gigas, and the mussels Mytilus edulis and Mytilus galloprovincialis. This extensive dataset offers a comprehensive view spanning multiple decades and ecosystems, allowing to track how coastal ecosystems and marine species record changing climate, physical-chemical environments and organic matter cycles. This dataset may also be used to study bivalve physiology. Additionally, these data are crucial for establishing isotope baselines for studying food webs. Ultimately, this data set provide valuable information for more effective ecosystem conservation and management strategies in our rapidly changing world.