From 1 - 7 / 7
  • The Joint Polar Satellite System (JPSS), starting with S-NPP launched on 28 October 2011, is the new generation of the US Polar Operational Environmental Satellites (POES). The Suomi National Polar-orbiting Partnership (S-NPP) is a collaboration between NASA and NOAA. The ACSPO SNPP/VIIRS L3U (Level 3 Uncollated) product is a gridded version of the ACSPO SNPP/VIIRS L2P product available here https://podaac.jpl.nasa.gov/dataset/VIIRS_NPP-OSPO-L2P-v2.61. The L3U output files are 10-minute granules in netCDF4 format, compliant with the GHRSST Data Specification version 2 (GDS2). There are 144 granules per 24hr interval, with a total data volume of 500MB/day. Fill values are reported at all invalid pixels, including pixels with >5 km inland. For each valid water pixel (defined as ocean, sea, lake or river, and up to 5 km inland), the following layers are reported: SSTs, ACSPO clear-sky mask (ACSM; provided in each grid as part of l2p_flags, which also includes day/night, land, ice, twilight, and glint flags), NCEP wind speed, and ACSPO SST minus reference (Canadian Met Centre 0.1deg L4 SST; available at https://podaac.jpl.nasa.gov/dataset/CMC0.1deg-CMC-L4-GLOB-v3.0 ). Only L2P SSTs with QL=5 were gridded, so all valid SSTs are recommended for the users. Per GDS2 specifications, two additional Sensor-Specific Error Statistics layers (SSES bias and standard deviation) are reported in each pixel with valid SST. The ACSPO VIIRS L3U product is monitored and validated against iQuam in situ data (Xu and Ignatov, 2014) in SQUAM (Dash et al, 2010).

  • A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on retrievals from the Visible Infrared Imaging Radiometer Suite (VIIRS). This sensor resides on the Suomi National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) satellite launched on 28 October 2011.The VIIRS instrument is a a 22-band, multi-spectral scanning radiometer with a 3040-km swath width that builds on the heritage of the MODIS , AVHRR and SeaWIFS sensors for sea surface temperature (SST) and ocean color. For the infrared bands for SST the effective pixel size is 740 meters at nadir and the pixel size variation across the swath is constrained to no more than 1600 meters at the edge of the swath. However, the processing of this dataset aggregates two pixels into one so the resolution is 1500 meters at nadir. This dataset adheres to the GHRSST Data Processing Specification (GDS) version 2 format specifications.

  • A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on retrievals from the Visible Infrared Imaging Radiometer Suite (VIIRS). This sensor resides on the Suomi National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) satellite launched on 28 October 2011. The VIIRS instrument is a a 22-band, multi-spectral scanning radiometer with a 3040-km swath width that builds on the heritage of the MODIS , AVHRR and SeaWIFS sensors for sea surface temperature (SST) and ocean color. For the infrared bands for SST the effective pixel size is 740 meters at nadir and the pixel size variation across the swath is constrained to no more than 1600 meters at the edge of the swath. However, the processing of this dataset aggregates two pixels into one so the resolution is 1500 meters at nadir. This dataset adheres to the GHRSST Data Processing Specification (GDS) version 2 format specifications.

  • A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on retrievals from the Visible Infrared Imaging Radiometer Suite (VIIRS). This sensor resides on the Suomi National Polar-orbiting Partnership (Suomi_NPP) satellite launched on 28 October 2011. VIIRS is a whiskbroom scanning radiometer which takes measurements in the cross-track direction within a field of regard of 112.56 degrees using 16 detectors and a double-sided mirror assembly. At a nominal altitude of 829 km, the swath width is 3060 km, providing full daily coverage both on the day and night side of the Earth.The VIIRS instrument is a 22-band, multi-spectral scanning radiometer that builds on the heritage of the MODIS , AVHRR and SeaWIFS sensors for sea surface temperature (SST) and ocean color. For the infrared bands for SST the effective pixel size is 750 meters at nadir and the pixel size variation across the swath is constrained to no more than 1600 meters at the edge of the swath. This L2P SST v3.0 is upgraded from the v2.0 with several significant improvements in processing algorithms, including contamination detection, cloud detection, and data format upgrades. It contains the global near daily-coverage Sea Surface Temperature at 1-meter depth with 750 m (along) x 750 m (cross) spatial resolution in swath coordinates. Each netCDF file has 768 x 3200 pixels in size, in compliance with the GHRSST Data Processing Specification (GDS) version 2 format specifications.

  • The Joint Polar Satellite System (JPSS), starting with S-NPP launched on 28 October 2011, is the new generation of the US Polar Operational Environmental Satellites (POES). The Suomi National Polar-orbiting Partnership (S-NPP) is a collaboration between NASA and NOAA. NOAA is responsible for all JPSS products, including SST from the Visible Infrared Imaging Radiometer Suite (VIIRS). VIIRS is a whiskbroom scanning radiometer, which takes measurements in the cross-track direction within a field of view of 112.56-deg using 16 detectors and a double-sided mirror assembly. At a nominal altitude of 829 km, the swath width is 3,060 km, providing global daily coverage for both day and night passes. VIIRS has 22 spectral bands covering the spectrum from 0.4-12 um, including 16 moderate resolution bands (M-bands). The L2P SST product is derived at the native sensor resolution (~0.75 km at nadir, ~1.5 km at swath edge) using NOAA's Advanced Clear-Sky Processor for Ocean (ACSPO) system, and reported in 10-minute granules in netCDF4 format, compliant with the GHRSST Data Specification version 2 (GDS2). There are 144 granules per 24hr interval, with a total data volume of 27GB/day. In addition to pixel-level earth locations, Sun-sensor geometry, and ancillary data from the NCEP global weather forecast, ACSPO outputs include four brightness temperatures (BTs) in M12 (3.7um), M14 (8.6um), M15 (11um), and M16 (12um) bands, and two reflectances in M5 (0.67um) and M7 (0.87um) bands. The reflectances are used for cloud identification. Beginning with ACSPO v2.60, all BTs and reflectances are destriped (Bouali and Ignatov, 2014) and resampled (Gladkova et al., 2016), to minimize the effect of bow-tie distortions and deletions. SSTs are retrieved from destriped BTs.SSTs are derived from BTs using the Multi-Channel SST (MCSST; night) and Non-Linear SST (NLSST; day) algorithms (Petrenko et al., 2014). An ACSPO clear-sky mask (ACSM) is provided in each pixel as part of variable l2p_flags, which also includes day/night, land, ice, twilight, and glint flags (Petrenko et al., 2010). Fill values are reported in all invalid pixels, including those with >5 km inland. For each valid water pixel (defined as ocean, sea, lake or river, and up to 5 km inland), four BTs in M12/14/15/16 (included for those users interested in direct "radiance assimilation", e.g., NOAA NCEP, NASA GMAO, ECMWF) and two refelctances in M5/7 are reported, along with derived SST. Other variables include NCEP wind speed and ACSPO SST minus reference SST (Canadian Met Centre 0.1deg L4 SST; available at https://podaac.jpl.nasa.gov/dataset/CMC0.1deg-CMC-L4-GLOB-v3.0). Only ACSM confidently clear pixels are recommended (equivalent to GDS2 quality level=5). Per GDS2 specifications, two additional Sensor-Specific Error Statistics layers (SSES bias and standard deviation) are reported in each pixel with QL=5. Note that users of ACSPO data have the flexibility to ignore the ACSM and derive their own clear-sky mask, and apply it to BTs and SSTs. They may also ignore ACSPO SSTs, and derive their own SSTs from the original BTs.The ACSPO VIIRS L2P product is monitored and validated against quality controlled in situ data provided by NOAA in situ SST Quality Monitor system (iQuam; Xu and Ignatov, 2014) using another NOAA system, SST Quality Monitor (SQUAM; Dash et al, 2010). Corresponding clear-sky BTs are validated against RTM simulations in the Monitoring IR Clear-sky Radiances over Ocean for SST system (MICROS; Liang and Ignatov, 2011). A reduced size (1GB/day), equal-angle gridded (0.02-deg resolution), ACSPO L3U product is also available at https://podaac.jpl.nasa.gov/dataset/VIIRS_NPP-OSPO-L3U-v2.61, where gridded L2P SSTs with QL=5 only are reported, and BT layers omitted.

  • A Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in real-time from the Infrared Atmospheric Sounding Interferometer (IASI) on the European Meteorological Operational-B (MetOp-B)satellite (launched 17 Sep 2012). The European Organization for the Exploitation of Meteorological Satellites (EUMETSAT),Ocean and Sea Ice Satellite Application Facility (OSI SAF) is producing SST products in near realtime from METOP/IASI. The Infrared Atmospheric Sounding Interferometer (IASI) measures inthe infrared part of the electromagnetic spectrum at a horizontal resolution of 12 km at nadir up to40km over a swath width of about 2,200 km. With 14 orbits in a sun-synchronous mid-morningorbit (9:30 Local Solar Time equator crossing, descending node) global observations can beprovided twice a day. The SST retrieval is performed and provided by the IASI L2 processor atEUMETSAT headquarters. The product format is compliant with the GHRSST Data Specification(GDS) version 2.