From 1 - 4 / 4
  • A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on retrievals from the Visible Infrared Imaging Radiometer Suite (VIIRS). This sensor resides on the Suomi National Polar-orbiting Partnership (Suomi_NPP) satellite launched on 28 October 2011. VIIRS is a whiskbroom scanning radiometer which takes measurements in the cross-track direction within a field of regard of 112.56 degrees using 16 detectors and a double-sided mirror assembly. At a nominal altitude of 829 km, the swath width is 3060 km, providing full daily coverage both on the day and night side of the Earth.The VIIRS instrument is a 22-band, multi-spectral scanning radiometer that builds on the heritage of the MODIS , AVHRR and SeaWIFS sensors for sea surface temperature (SST) and ocean color. For the infrared bands for SST the effective pixel size is 750 meters at nadir and the pixel size variation across the swath is constrained to no more than 1600 meters at the edge of the swath. This L2P SST v3.0 is upgraded from the v2.0 with several significant improvements in processing algorithms, including contamination detection, cloud detection, and data format upgrades. It contains the global near daily-coverage Sea Surface Temperature at 1-meter depth with 750 m (along) x 750 m (cross) spatial resolution in swath coordinates. Each netCDF file has 768 x 3200 pixels in size, in compliance with the GHRSST Data Processing Specification (GDS) version 2 format specifications.

  • NOAA-20 (N20/JPSS-1/J1) is the second satellite in the US NOAA latest generation Joint Polar Satellite System (JPSS). N20 was launched on November 18, 2017. In conjunction with the first US satellite in JPSS series, Suomi National Polar-orbiting Partnership (S-NPP) satellite launched on October 28, 2011, N20 form the new NOAA polar constellation. NOAA is responsible for all JPSS products, including SST from the Visible Infrared Imaging Radiometer Suite (VIIRS). VIIRS is a whiskbroom scanning radiometer, which takes measurements in the cross-track direction within a field of view of 112.56-deg using 16 detectors and a double-sided mirror assembly. At a nominal altitude of 829 km, the swath width is 3,060 km, providing global daily coverage for both day and night passes. VIIRS has 22 spectral bands, covering the spectrum from 0.4-12 um, including 16 moderate resolution bands (M-bands). The L2P SST product is derived at the native sensor resolution (~0.75 km at nadir, ~1.5 km at swath edge) using NOAA's Advanced Clear-Sky Processor for Ocean (ACSPO) system, and reported in 10 minute granules in netCDF4 format, compliant with the GHRSST Data Specification version 2 (GDS2). There are 144 granules per 24hr interval, with a total data volume of 27GB/day. In addition to pixel-level earth locations, Sun-sensor geometry, and ancillary data from the NCEP global weather forecast, ACSPO outputs include four brightness temperatures (BTs) in M12 (3.7um), M14 (8.6um), M15 (11um), and M16 (12um) bands, and two reflectances in M5 (0.67um) and M7 (0.87um) bands. The reflectances are used for cloud identification. Beginning with ACSPO v2.60, all BTs and reflectances are destriped (Bouali and Ignatov, 2014) and resampled (Gladkova et al., 2016), to minimize the effect of bow-tie distortions and deletions. SSTs are retrieved from destriped BTs. SSTs are derived from BTs using the Multi-Channel SST (MCSST; night) and Non-Linear SST (NLSST; day) algorithms (Petrenko et al., 2014). ACSPO clear-sky mask (ACSM) is provided in each pixel as part of variable l2p_flags, which also includes day/night, land, ice, twilight, and glint flags (Petrenko et al., 2010). Fill values are reported in all pixels with >5 km inland. For each valid water pixel (defined as ocean, sea, lake or river, and up to 5 km inland), four BTs in M12/14/15/16 (included for those users interested in direct "radiance assimilation", e.g., NOAA NCEP, NASA GMAO, ECMWF) and two refelctances in M5/7 are reported, along with derived SST. Other variables include NCEP wind speed and ACSPO SST minus reference SST (Canadian Met Centre 0.1deg L4 SST; available at https://podaac.jpl.nasa.gov/dataset/CMC0.1deg-CMC-L4-GLOB-v3.0). Only ACSM confidently clear pixels are recommended (equivalent to GDS2 quality level=5). Per GDS2 specifications, two additional Sensor-Specific Error Statistics layers (SSES bias and standard deviation) are reported in each pixel with QL=5. Note that users of ACSPO data have the flexibility to ignore the ACSM and derive their own clear-sky mask, and apply it to BTs and SSTs. They may also ignore ACSPO SSTs, and derive their own SSTs from the original BTs. The L2P product is monitored and validated against quality controlled in situ data provided by NOAA in situ SST Quality Monitor system (iQuam; Xu and Ignatov, 2014), using another NOAA system, SST Quality Monitor (SQUAM; Dash et al, 2010). Corresponding clear-sky BTs are validated against RTM simulation in the Monitoring IR Clear-sky Radiances over Ocean for SST system (MICROS; Liang and Ignatov, 2011). A reduced size (1GB/day), equal-angle gridded (0.02-deg), ACSPO L3U product is also available at https://podaac.jpl.nasa.gov/dataset/VIIRS_N20-OSPO-L3U-v2.61, where gridded L2P SSTs with QL=5 only are reported, and BT layers omitted.

  • The Joint Polar Satellite System (JPSS), starting with S-NPP launched on 28 October 2011, is the new generation of the US Polar Operational Environmental Satellites (POES). The Suomi National Polar-orbiting Partnership (S-NPP) is a collaboration between NASA and NOAA. NOAA is responsible for all JPSS products, including SST from the Visible Infrared Imaging Radiometer Suite (VIIRS). VIIRS is a whiskbroom scanning radiometer, which takes measurements in the cross-track direction within a field of view of 112.56-deg using 16 detectors and a double-sided mirror assembly. At a nominal altitude of 829 km, the swath width is 3,060 km, providing global daily coverage for both day and night passes. VIIRS has 22 spectral bands covering the spectrum from 0.4-12 um, including 16 moderate resolution bands (M-bands). The L2P SST product is derived at the native sensor resolution (~0.75 km at nadir, ~1.5 km at swath edge) using NOAA's Advanced Clear-Sky Processor for Ocean (ACSPO) system, and reported in 10-minute granules in netCDF4 format, compliant with the GHRSST Data Specification version 2 (GDS2). There are 144 granules per 24hr interval, with a total data volume of 27GB/day. In addition to pixel-level earth locations, Sun-sensor geometry, and ancillary data from the NCEP global weather forecast, ACSPO outputs include four brightness temperatures (BTs) in M12 (3.7um), M14 (8.6um), M15 (11um), and M16 (12um) bands, and two reflectances in M5 (0.67um) and M7 (0.87um) bands. The reflectances are used for cloud identification. Beginning with ACSPO v2.60, all BTs and reflectances are destriped (Bouali and Ignatov, 2014) and resampled (Gladkova et al., 2016), to minimize the effect of bow-tie distortions and deletions. SSTs are retrieved from destriped BTs.SSTs are derived from BTs using the Multi-Channel SST (MCSST; night) and Non-Linear SST (NLSST; day) algorithms (Petrenko et al., 2014). An ACSPO clear-sky mask (ACSM) is provided in each pixel as part of variable l2p_flags, which also includes day/night, land, ice, twilight, and glint flags (Petrenko et al., 2010). Fill values are reported in all invalid pixels, including those with >5 km inland. For each valid water pixel (defined as ocean, sea, lake or river, and up to 5 km inland), four BTs in M12/14/15/16 (included for those users interested in direct "radiance assimilation", e.g., NOAA NCEP, NASA GMAO, ECMWF) and two refelctances in M5/7 are reported, along with derived SST. Other variables include NCEP wind speed and ACSPO SST minus reference SST (Canadian Met Centre 0.1deg L4 SST; available at https://podaac.jpl.nasa.gov/dataset/CMC0.1deg-CMC-L4-GLOB-v3.0). Only ACSM confidently clear pixels are recommended (equivalent to GDS2 quality level=5). Per GDS2 specifications, two additional Sensor-Specific Error Statistics layers (SSES bias and standard deviation) are reported in each pixel with QL=5. Note that users of ACSPO data have the flexibility to ignore the ACSM and derive their own clear-sky mask, and apply it to BTs and SSTs. They may also ignore ACSPO SSTs, and derive their own SSTs from the original BTs.The ACSPO VIIRS L2P product is monitored and validated against quality controlled in situ data provided by NOAA in situ SST Quality Monitor system (iQuam; Xu and Ignatov, 2014) using another NOAA system, SST Quality Monitor (SQUAM; Dash et al, 2010). Corresponding clear-sky BTs are validated against RTM simulations in the Monitoring IR Clear-sky Radiances over Ocean for SST system (MICROS; Liang and Ignatov, 2011). A reduced size (1GB/day), equal-angle gridded (0.02-deg resolution), ACSPO L3U product is also available at https://podaac.jpl.nasa.gov/dataset/VIIRS_NPP-OSPO-L3U-v2.61, where gridded L2P SSTs with QL=5 only are reported, and BT layers omitted.

  • These files contain NASA produced skin sea surface temperature (SST) products from the Infrared (IR) channels of the Visible and Infrared Imager/Radiometer Suite (VIIRS) onboard the Suomi-NPP satellite. VIIRS is a multi-disciplinary instrument that is also being flown on the Joint Polar Satellite System (JPSS) series of spacecraft, of which NOAA-20 is the first. JPSS is a multi-agency program that consolidates the polar orbiting spacecraft of NASA and the National Oceanic and Atmospheric Administration (NOAA). Suomi-NPP is the initial spacecraft in this series, and VIIRS is the successor to MODIS for Earth science data. VIIRS has 22 spectral bands ranging from 412 nm to 12 micron . There are 16 moderate-resolution bands (750m at nadir), 5 image-resolution bands (375 m), and one day-night band (DNB). VIIRS uses on-board pixel aggregation to reduce the growth in size of pixels away from nadir. Two SST products are contained in these files. The first is a skin SST produced separately for day and night observations, derived from the long wave IR 11 and 12 micron wavelength channels, using a modified nonlinear SST algorithm intended to provide continuity of SST products from heritage and current NASA sensors. At night, a second triple channel SST product is generated using the 3.7 , 11 and 12 micron IR channels, identified as SST_triple. Due to the sun glint in the 3.7 micron SST_triple can only be used at night. VIIRS L2P SST data have a 750 spatial resolution at nadir and are stored in ~288 five minute granules per day. Full global coverage is obtained each day. The production of VIIRS NASA L2P SST files is part of the Group for High Resolution Sea Surface Temperature (GHRSST) project and is a joint collaboration between the NASA Jet Propulsion Laboratory (JPL), the NASA Ocean Biology Processing Group (OBPG), and the Rosenstiel School of Marine and Atmospheric Science (RSMAS). Researchers at RSMAS were responsible for sea surface temperature algorithm development, error statistics and quality flagging, while the OBPG, as the NASA ground data system, is responsible for the production of VIIRS ocean products. JPL acquires VIIRS ocean granules from the OBPG and reformats them to the GHRSST L2P netCDF specification with complete metadata and is the official Physical Oceanography Data Archive (PO.DAAC) for SST. In mid-August, 2018, the RSMAS involvement in the VIIRS SST project ceased, and the subsequent fields are not maintained.The R2016.2 supersedes the previous v2016.0 datasets which can be found at https://doi.org/10.5067/GHVRS-2PN16